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Summary

1. Species–area relationships (SAR) and species-abundance distributions (SAD) are among the most studied

patterns in ecology, due to their application to both theoretical and conservation issues. One problem with these

general patterns is that different theories can generate the same predictions, and for this reason, they cannot be

used to detect differentmechanisms of community assembly.

2. A solution is to search for more sensitive patterns, for example by extending the SAR to the whole SAD. A

generalized dimension (Dq) approach has been proposed to study the scaling of SAD, but to date, there has been

no evaluation of the ability of this pattern to detect differentmechanisms.

3. An equivalent way to express SAD is the rank-abundance distribution (RAD). Here I introduce a newway to

study SAD scaling using a spatial version of RAD: the species-rank surface (SRS), which can be analysed using

Dq. Thus, there is an oldDq based on SAR (DSAD
q ), and a new one based on SRS (DSRS

q ). I perform spatial simula-

tions to examine the relationship ofDqwith SAD, spatial patterns and number of species. Finally, I compare the

power of both Dq, SAD, SAR exponent and the fractal information dimension to detect different community

patterns using a continuumof hierarchical and neutral spatially explicit models.

4. The SAD,DSAD
q andDSRS

q all had good performance in detectingmodels with contrastingmechanisms.DSRS
q ,

however, had a better fit to data and allowed comparisons between hierarchical communities where the other

methods failed. The SAR exponent and information dimension had low power and should not be used.

5. SRS andDSRS
q could be interestingmethods to study community ormacroecological patterns.

Key-words: multifractals, multispecies spatial pattern, species–area relationship, species-rank

surface

Introduction

The species–area relationship (SAR) is considered one of

the oldest and best-documented patterns, and one of a few

fundamental generalizations, in ecology (Crawley & Harral

2001; �Sizling et al. 2011). The SAR is often characterized by

a triphasic curve, with a range of intermediate scales corre-

sponding to power-law relationship between the number of

species and the area in which they occur (Preston 1960;

Hubbell 2001). Although other quantitative forms could

also be appropriate (Tjø rve 2003; White et al. 2010), this

power law is widely accepted (Rosindell & Cornell 2007)

and implies a self-similar or fractal structure of species

distributions for a community across spatial scales (�Sizling

& Storch 2004).

Species–area relationships only give information about the

changes of richness with scale, but can be extended by incor-

porating the species-abundance distribution (SAD), using

Hill’s generalized diversity indices (Hill 1973), which follow

from the definition of generalized entropies used in statistical

physics, called Renyi’s entropies (Renyi 1970). The scaling

exponents of Renyi’s entropies are called generalized dimen-

sions and are used in physics to characterize multifractals

(Beck 1990). Multifractals and fractals are related techniques

first used in physics to characterize scaling behaviour of com-

plex structures (Stanley & Meakin 1988); the difference is

that fractals look at the geometry of presence/absence pat-

terns, while multifractals describe the arrangement of quanti-

ties such as population density or biomass (Saravia, Giorgi

& Momo 2012a). Multifractal analysis has been applied to

ecology in different areas: metapopulation models (Gamarra

2005), analysis of natural landscapes (Kirkpatrick &

Weishampel 2005), search patterns in copepods (Seuront &

Stanley 2014) and biomass dynamics in microalgae (Seuront

& Spilmont 2002; Saravia, Giorgi & Momo 2012a; Dal Bello

et al. 2014).

The application of generalized dimensions to extend SAR

was first suggested by Ricotta (2000), and the methodology

was later developed and applied to Barro Colorado Island

forest plots by Borda-de-�Agua, Hubbell & McAllister (2002),

who estimated generalized dimensions of SAD. Since then,

several field studies have characterized species-abundance

scaling – also called the species diversity–area relationship*Correspondence author. lsaravia@ungs.edu.ar

© 2015 The Author. Methods in Ecology and Evolution © 2015 British Ecological Society

Methods in Ecology and Evolution 2015, 6, 1298–1310 doi: 10.1111/2041-210X.12417



(DAR) – using generalized dimensions and other multifractal

techniques (Zhang et al. 2006; Yakimov et al. 2008; Wei

et al. 2013). In addition, generalized dimensions have been

applied to a spatially explicit neutral model (Yakimov et al.

2014a) and used in open source software for ecological multi-

fractal analysis (Saravia 2014).

The SAD is another fundamental pattern in ecological

communities and plays a major role in ecology and conserva-

tion (McGill et al. 2007). SADs have been used to compare

different communities and to compare models and data, but

is problematic because different mechanisms can produce

nearly identical SADs (Chave, Muller-Landau & Levin 2002;

Chisholm & Pacala 2010; Rosindell & Cornell 2013). SADs

are often presented using rank-abundance diagrams (RADs)

in which the log-abundance is plotted against the rank of the

species (McGill et al. 2007). Rank-abundance diagrams are

equivalent to cumulative distributions and thus a robust way

to visualize the SAD without losing information (Newman

2005).

Here I propose a new way to analyse the relation of SAD

with spatial scale, by attaching the rank of each species to its

spatial distribution; in this way, the multivariate spatial distri-

bution of species is summarized into a univariate two-dimen-

sional distribution. I call this spatial distribution the species-

rank surface (SRS), and it can be analysed and compared using

generalized dimensions. This paper uses simulations of spatial

patterns to compare the behaviour of generalized dimensions

calculated fromSRS and SAD.First, I use simple artificial spa-

tial patterns: regular and randomized, combined with a uni-

form and logseries SAD, to observe the behaviour of

generalized dimensions. Then, I use a continuum of neutral

and hierarchical models to test whether generalized dimensions

can detect different communities, estimating statistical power

and type I error rate. I also compare the performance of gener-

alized dimensions with single-dimensional indicators (the SAR

exponent and the information dimension). A summary of the

methods used to compare communities is presented in

Table 1.

Methods

MULTIFRACTAL ANALYSIS

Extensive reviews of generalized dimensions and multifractal methods

applied to ecology are available (Seuront 2009), and some good intro-

ductions have also been published (Scheuring & Riedi 1994; Borda-de-
�Agua, Hubbell & He 2007); thus, I will only give a brief description.

The generalized dimensions technique analyses the scaling properties

of quantities distributed in a space that we assume to be two dimen-

sional (i.e. a plane). This distribution should be self-similar across some

range of scales, a property called multifractal, and can be mathemati-

cally represented in different ways (Harte 2001), of which the closest to

ecology are the generalized dimensions Dq (Grassberger 1983), also

calledRenyi dimensions (Renyi 1970).Dq has been used to characterize

the probabilistic structure of attractors derived fromdynamical systems

(Hentschel & Procaccia 1983).

I will analyse two kinds of Dq: the standard one used to analyse any

quantity distributed in space, and another based on the SAD of a com-

munity in an area. The first kind is used to analyse the SRS (described

later) and so is termed DSRS
q . The second is based on SAD and named

DSAD
q . In both cases, I used the method of moments based on box

counting (Evertsz & Mandelbrot 1992) to estimate generalized dimen-

sions.

The mathematical representations for DSRS
q and DSAD

q are slightly

different. For DSRS
q the spatial distribution of quantities l is covered

with a grid, dividing it intoN(e) boxes of side e, allowing us to calculate
the value li(e) in each. Then, the so-called partition function is com-

puted as:

ZqðeÞ ¼
XNðeÞ

i

ðlðeÞÞq; eqn 1

where q can be any real number and is calledmoment order. The opera-

tion is performed for different values of e and q, within a predetermined

range. The generalized dimension is then calculated as:

DSRS
q ¼ 1

q� 1
lim
e!0

logðZqðeÞÞ
log e

: eqn 2

When q = 1, the denominator of the first term inDSRS
q is undefined,

so it must be replaced by the following expression:

DSRS
1 ¼ lim

e!0

XNðeÞ
i

liðeÞ logðliðeÞÞ
log e

: eqn 3

In practical cases as the limit cannot be assessed, and the dimensions

are estimated as the slope of the log(Zq) vs. log(e) in eqn 1 replacing by

the numerator in eqn 3. This is done for different values of q, provided

that it is a real number, which yields a graph ofDSRS
q in terms of q. This

graph is called the spectrumof generalized dimensions.

To be an approximatemultifractal, the relationship log(Zq) vs. log(e)
should be well described by a linear relationship, but a linear relation-

ship with superimposed oscillations is also acceptable (Borda-de-�Agua,

Hubbell & He 2007). A range of q and e values must be established,

and then DSRS
q is estimated using linear regression. Note that DSRS

q is

defined as the limit e?0 (eqns 2 and 3), and thus, to use the method, it

is sufficient that a scale exists below which a linear relationship applies

(Hentschel & Procaccia 1983).

To analyse species-abundance–area relationships with multifrac-

tals using the method of Borda-de-�Agua, Hubbell & McAllister

(2002), the boxes are replaced by species. Thus, at each spatial

scale e each species holds the quantity of interest: its own abun-

dance. Then, the partition function is defined as a sum over the

Table 1. Methods used to calculate the power to compare simulated

communities with different degree of neutrality

Method Name–meaning

SAD Species-abundance distribution

DSAD
q Generalized dimension spectra

based on SAD: characterize

the scaling of species abundances in space

DSRS
q Generalized dimension spectra based

on SRS: characterize the scaling of

the spatial distribution of the ranks

of species (SRS) derived fromSAD

DSAD
0 The power exponent of the species–area

relationship. This is part ofDSAD
q and

characterize the scaling of richness

DSRS
1 Information dimension of SRS. This is

part ofDSRS
q and characterize the scaling of

Shannon diversity index calculated on the spatial

distribution of species ranks
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species present S(A) in an area A and the side of the box e is

replaced by the area:

ZqðAÞ ¼
XSðAÞ

i

ðliðAÞÞq; eqn 4

where li(A) is the relative abundance of species i in an area A. DSAD
q is

defined as:

DSAD
q ¼ 1

1� q
lim
A!1

logðhZqðAÞiÞ
logA

: eqn 5

The angle brackets indicate averages of Zq(A) over subplots with

areaA. Thus, when I calculateDq based on SAD, I refer to it asDSAD
q ,

and when I calculateDq from the SRS,DSRS
q ;Dq without a superscript

refer to both.

DSAD
q represents the scaling of the Hill’s generalized diversity index

(Hill 1973): when the moment order is q = 0, then DSAD
q becomes the

exponent of the SAR power-law scaling; when q = 1,DSAD
q , represent

the scaling of Shannon diversity index; and when q=2,DSAD
q , becomes

the scaling of Simpson’s index. This is why DSAD
q , can characterize

DARs.

Theoretically Dq must be a non-increasing function of q (Hentschel

& Procaccia 1983), which means that if q1 ≥ q2 then Dq1 ≥ Dq2. Some

studies have shown small violations of this property forDSAD
q (Borda-

de-�Agua, Hubbell & McAllister 2002; Zhang et al. 2006). These viola-

tions are related to the way that DSAD
q is defined: the summation of

eqn 4 is over species, while the summation of the original definition,

eqn 1, is over boxes, and this changes the way in which the mathemati-

cal limits are taken and also the computation method of DSAD
q . A par-

tial solution has been proposed (Yakimov et al. 2014b), but the

anomalies observed may be related to the mathematical assumptions

needed forDq to be non-increasing, in which case, a new mathematical

proof should be developed for DSAD
q . Thus, as long as the linear rela-

tionship is reasonable, I takeDSAD
q as a useful technique of analysis.

In a previous work, I proposed a new way to analyse species-abun-

dance–area relationship using multifractals, one that fits more closely

to the original definitions of eqns 1–3: the SRS (Saravia 2014). To

construct the SRS, the spatial distribution of species has to be trans-

formed by assigning to each species position its rank. First, I use the

species abundances, at the whole plot level, to calculate the species’

rank ordering from highest to lowest, assigning a number starting with

one. If there are species with the same abundance, the ranks are

assigned at random, and thus, all species are present in the surface.

Then, the rank is assigned to the spatial position of the individuals of

each species, forming a surface: a (mathematical) landscape with

valleys formed by the most abundant species, and peaks determined by

the rarest. Finally, the standard multifractal analysis is applied. If

sampling was performed using quadrats, without taking the spatial

position of individuals, the sum of the ranks of the species in the small-

est quadrats can be used to form the SRS.

To determine whether a data set could be analysed using multifrac-

tals, there should be a linear relationship between log(Zq) vs. log(e), but
oscillationsmight be present and the data sets still qualify as self-similar

(Liebovitch 1998). For this reason, it is difficult to use tests of quadratic

trends as proposed by Yakimov et al. (2008), because the curvature of

a quadratic function can be fitted by a periodic function with the cor-

rect amplitude. To work around this problem, I used the coefficient of

determination (R2) as a measure of goodness-of-fit (Borda-de-�Agua,

Hubbell & McAllister 2002); in general, this is not a good indicator of

linearity, but since linearity is not exclusively required, I use it here in a

descriptive way. The C++ source code to perform the multifractal anal-

ysis is available at https://github.com/lsaravia/mfsba.

To date, no theoretical shape of Dq has been derived for the spatial

distributions of species; all that is known is thatDq is bounded such that

D∞ and D�∞ exist, and that Dq is a non-increasing function of q and

thus that D�∞ ≤ D∞. Generalized dimensions (Dq) can be interpreted

like a SAR power-law exponent: with larger values, the change in the

number of species is greater when the scale of observation changes to a

larger area. Dq expresses the change of the quantity under study when

scale changes, but is modulated by q. When q is positive, the terms of

the sums (eqns 2 and 5) with more abundant species have more weight

and become evenmore important when q is greater.When q is negative,

we have the opposite pattern: less abundant species have more weight

in the sum, and so,Dq reflects the change of rare species.When |q| is lar-

ger, Dq is driven by more and more extreme values, and thus, Dq will

have higher variance because extreme values are rarer. Here I present

most figures with a range of q from �24 to 24, but for statistical com-

parisons, I use a smaller range (from �10 to 10) to avoid large vari-

ances.

Thus for negative q values (i.e. the left side of the curves in Fig. 2),

DSAD
q characterizes the scaling of less abundant species – but we do not

know exactly which species, as the curvature ofDSAD
q when approach-

ing D�∞ depends on the species abundances of the less abundant spe-

cies, and we do not know exactly how the abundances and spatial

patterns of these will influence the shape ofDSAD
q .DSRS

q also reflect the

spatial patterns of the less abundant species, and the quantityD�∞ can

be independently calculated (Borda-de-�Agua, Hubbell & McAllister

2002) and used to study rare species from the point of view of SAD and

SRS; this is a different possible application of generalized dimensions.

The positive part of the Dq spectra characterizes the most abundant

species for both SAD and SRS, but again it is unknown exactly how

the shape of SAD, or its spatial pattern, will change the curvature of

Dq. In this case the quantity D∞ characterizes the most abundant spe-

cies, and its relationship with D�∞ could give information about the

relation of dominant and rare species. Thus, the range of Dq provides

important information, but the shape of the spectrum is also necessary

to characterize the scaling of SADor SRS.

GENERALIZED DIMENSION RELATIONSHIP WITH

SPATIAL PATTERNS AND SADS

I simulated species’ spatial patterns with different SADs to demon-

strate how Dq is related to them. First, I generated a uniform SAD,

in which all species have approximately the same densities, by taking

the number of individuals of each species from a Poisson distribution

with the same mean. I distributed them in bands over a spatial grid,

so they formed a regular spatial pattern, in which each grid position

is occupied by exactly one individual. I chose the number of species

to exactly divide the side of the grid, so all species are strips with

approximately the same width (Fig. 1). I used square grids with sides

of 256 and 512 sites containing 65 536 and 262 144 individuals,

respectively, and 8, 64 and 256 species, and then calculated Dq for

the regular pattern, randomizing the positions of species to compare

Dq obtained with these two extreme cases. The second SAD used

was a logseries (Fisher, Corbet & Williams 1943) with the same num-

ber of species and the same sides as above. I used the R package

untb (Hankin 2007) to calculate the density for each species; this

basically uses a Poisson distribution with the expected logseries abun-

dances as means. I then built the regular pattern with strips of spe-

cies, but as species have different abundances, the widths for each

species are different (Fig. 1). I then estimated Dq for the regular and

randomized patterns, simulated 10 spatial patterns for each case, and

calculated the mean and standard deviation (SD) of Dq.

© 2015 The Author. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 6, 1298–1310
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SPATIALLY EXPLIC IT MODEL

To simulatemore realistic patterns of species-abundance–area relation-

ships, I used a stochastic spatially explicit model. For this, I developed

a stochastic cellular automata (Molofsky&Bever 2004) model that can

switch between neutral and hierarchical competition, representing a

continuum between niche and neutral communities (Gravel et al.

2006). Under neutral competition individuals do not interact, and all

have the same mortality, colonization rates and dispersal distances; in

spite of these gross simplifications, neutral models are capable of pre-

dicting several real community patterns (Rosindell, Hubbell & Etienne

2011). At the other end of the continuum are niche communities repre-

sented by hierarchical competition models (Tilman 1994). In this case,

species have differences that imply a competitive hierarchy, in which

some species are always better than others, producing competitive

exclusion (Chave,Muller-Landau&Levin 2002). I added a probability

of replacement q to the neutral model: when q = 1 more competitive

species always replace less competitive and the model behaves as a pure

hierarchical one, and when q = 1, there is no replacement of species

and the model is completely neutral. A more thorough description of

the model is given in Appendix S1 (Supporting Information), and its

C++ source code is available at https://github/lasaravia/neutral and fig-

share http://dx.doi.org/10.6084/m9.figshare.969692.

Following a classical neutral scheme, the model has a metacommu-

nity: a regional collection of communities. With probabilitym, an indi-

vidual of a species i can migrate from the metacommunity at a rate

proportional to its frequency Xi in the metacommunity. Species can

also disperse locally, and the model assumes an exponential dispersal

kernel with average dispersal distance d. Other model parameters are

the mortality rate l, the number of species in the metacommunity and

the size of the community, represented as the side of the grid used in the

simulations. I used a logseries SAD for themetacommunity, defined by

the maximum number of individuals (side 9 side) and the number of

species (Fisher, Corbet & Williams 1943). To represent a competition

colonization trade-off, I chose the most competitive species to be less

abundant in the metacommunity. Parameters values were in the range

estimated for BCI from the existing literature (Condit et al. 2002; Eti-

enne 2007; Anand&Langille 2010).

I performed 50 simulations, with 500 time steps (Figs 1 & 2 in

Appendix S2), for each combination of parameters given in Table 2.

To compute the statistical power, I made comparisons of communities

with different levels of q, representing more neutral or hierarchical

communities, in which the other parameters were kept constant. I also

made comparisons between repetitions with the same q to calculate the

type I error.

STATIST ICAL COMPARISON OF METHODS

I analysed the performance of two kinds of methods to differentiate

communities. The first consists of a set of points or curves: SADs,

generalized dimensions DSAD
q and DSRS

q . I am testing here for differ-

ences between two communities, thus I do not have information

about the variability in Dq for each q or in abundance of each spe-

cies, instead assuming that the sample comes from an unspecified

univariate distribution. For these, I used a permutation procedure

with the k-sample Anderson–Darling (AD) statistic (Scholz &

Stephens 1987). The AD statistic measures the differences between

the empirical distribution functions (EDFs) of two data sets as a

weighted sum of square deviations between the EDFs (Feigelson &

Babu 2012). This means that the information about q is lost, but as

Dq spectrum is continuous and non-increasing – with the previously

mentioned anomalies in DSAD
q – the shape of the curve is mirrored in

the EDF; this is why the method can be used. For SADs, the EDF

is equivalent to the rank-abundance distribution (RAD) (Newman

2005), and thus, I am really comparing RADs with this method. I

calculated p-values using 1000 permutations, in all cases using the

package kSamples (Scholz & Zhu 2012) in the R statistical

language (R Core Team, 2014). Scripts for all analyses are available

at github https://github.com/lsaravia/SpeciesRankSurface and fig-

share http://dx.doi.org/10.6084/m9.figshare.1276105.

The second kind of comparison method is based on a single dimen-

sion or power exponent: the SAR exponent and the information

(a) (b)

Fig. 1. Spatial patterns generated with log-

series and uniform species-abundance distri-

bution (all species have the same density) with

64 species and a grid with side = 256. (a) Reg-

ular: species are distributed in vertical bands.

(b) Randomized: the position of species is dis-

tributed at random in space.
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dimension. The SAR exponent is part of theDSAD
q spectra when q = 0

(Borda-de-�Agua, Hubbell & McAllister 2002); an equivalent single

number measure from DSRS
q is the information dimension (Ricotta

2000; Chappell & Scalo 2001), that is theDSRS
q when q = 1. I calculated

the power of these with a t-test using the SD obtained from the box-

counting regressions. These SD values are obtained with autocorre-

lated data, because small squares are nested within big squares (see

Multifractal Analysis). The consequence is that the SDmay be underes-

timated, but it has been shown that the slopes estimates are still unbi-

ased (Kutner et al. 2005). This should result in an increased type I error

rate and also in a spurious increase in statistical power. This power cal-

culation, based on one dimension, should be lower than the power for

the complete spectra, and I wanted to whether this simpler and less

computationally intensive method give good results when comparing

different communities. In at least some cases, autocorrelation does not

have significant consequences (Legendre et al. 2002), and it is thus

valuable to investigate the influence of autocorrelation in these single

dimensions.

CALCULATION OF POWER AND TYPE I ERROR

I simulated communities with different degrees of neutral/hierarchical

structure, given by the parameter q of the model. The power of a test is

the ability to reject the null hypothesis (H0) when false. The significance

level to rejectH0 was set a priori at a = 0�05 in all cases, and the rejec-

tion rate of each test was calculated as the proportion of P-values that

less than or equal to a. To estimate power, I used independent simula-

tions of communities (50 repetitions) with the same parameters except

q.

The type I error is the probability of rejectingH0 when it is true (false

positive). In our simulations, H0 is true if two simulated communities

have the same q (and also are equal in the other parameters). To esti-

mate type I error, I compared independent simulations of communities

with the same set of parameters (50 repetitions) and computed the pro-

portion of rejection.

Results

SIMPLE SPATIAL PATTERNS AND SAD

I calculated two versions ofDq: (i) the original definition due to

Borda-de-�Agua, Hubbell & McAllister (2002), where Dq mea-

sures the change in SAD as we change scale (DSAD
q ), and (ii)Dq

based on SRS, which measures the change in the spatial distri-

bution of species’ ranks as scale changes (DSRS
q ). Dq measures

the rate of change with scale from a baseline that is defined by

D0. When we study SAD, DSAD
0 is the SAR exponent and its

value is around 0�5. A spatial distribution of species that dupli-

cates its number with a duplication of the side of the area stud-

ied has a value of exactly 0�5. When we study SRS, theDSRS
0 is

the fractal dimension of the spatial distribution of species.

Note that in the simulations here, the individuals completely

fill the available space, and thus,DSRS
0 is equal to 2.

For the uniform SAD, we expected DSAD
0 to be around 0�5,

following a symmetric pattern around q = 0, as all species have

the same abundance and occupy the same area. The symmetric

pattern was not observed in the regular cases (Fig. 2) because

the negative part (q < 0) analyses numbers close to 0, and the

logarithm (eqn 5) enhances the differences between small

numbers (Laurie & Perrier 2011). Thus, the difference

ΔDq = |Dq – D0| is greater for q < 0.

Theoretically, Dq should be decreasing or constant, but this

was not observed in DSAD
q for the randomized spatial patterns

with few species. This is because when changing scales, there is

a point at which no new species are found, and the scaling rela-

tionship breaks. Figure 3 shows the scaling of Zq(e) fitted using
linear regression for 64 species and a side = 256 sites. The scal-

ing for a randomized patternDSAD
q breaks at 1�2, equivalent to

a box with side 16 or an area of 256 units. In contrast, the scal-

ing for the regular patternDSAD
q shows oscillations around the

fitted line but no evidence of breaks. When the number of spe-

cies is high (256), the DSAD
q is similar to the randomized one

(Fig. 2); this happens because new species appear in the whole

range of scales used.

TheR2 values (Table 1 inAppendix S2) indicate the presence

of poor fits or a scaling break. The DSAD
q for randomized pat-

terns and uniform SAD have the lowest R2 of all cases. Based

on all simulations, I observe that the cases with the following

conditions do not present anomalies: 90% of Dq should have

an R2 of 0�6 or greater, and 50% should have an R2 of 0�9 or

greater (Table 1 in Appendix S2); but one always should check

the plots of the fits (Fig. 3) and eventually change the e range.
Several patterns fail to complywith these conditions: for exam-

ple, all the uniform randomized patterns, and the logseries ran-

domized with eight species (Table 1 and Figs 4–8 in Appendix

S2), and these can be used as a guide to determine when the

method can be applied.

The DSAD
q for logseries had a more symmetric pattern than

for uniform SAD (Fig. 2), and exhibited better fits with higher

R2 (Fig. 3). Comparing regular and randomized spatial pat-

terns, the DSAD
q curves were superimposed on, or inside, the

SD of the other curve. Thus, it seems thatDSAD
q cannot distin-

guish between such patterns (although this only considers the

cases with good fits). Moreover, the range of DSAD
q did not

change very much with the number of species, as DSAD
q seems

to depend mostly on the SAD used to generate the spatial

pattern.

For DSRS
q , the theoretical decreasing pattern was fulfilled in

all cases, and no anomalies were observed (Fig. 2). As in the

previous case, an asymmetrical pattern was observed with

DSRS
q around 2, an asymmetry more pronounced for patterns

with uniform SAD than for logseries SAD. This is because log-

series SAD have one very abundant species, with several less

abundant and rare species scattered through the pattern

(Fig. 1), and thus, the abundant species dominated the spatial

pattern and in some cases produced a greater ΔDq = |Dq – D0|

in the positive side of the plot (Fig 2, eight species).

Table 2. Parameters values used in the simulations of the neutral-hier-

archical model

Side No. species l d m q

256 11 0�2 25 0�001 1

512 86 0�1
341 0�01

0�001
0
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The uniform SAD produced DSRS
q with higher ΔDq values

for regular patterns when q < 0. This is because the species are

aggregated in the regular pattern, whereas in the randomized

pattern, there is no aggregation, soDSRS
q is closer to two. Thus,

DSRS
q for regular and randomized are more different on the

negative side and more similar on the positive side. For log-

series SAD, the differences in DSRS
q are similar at negative or

positive sides of q. In general, DSRS
q curves for different spatial

patterns and different SADs are distinct, except in some cases

with 8 species, the curves for which are inside the SDof a differ-

ent pattern.

TheR2 values forDSRS
q were all >0�9, higher thanDSAD

q , and

all complied with the conditions described above (Table 1 in

Appendix S2). Their linear trends were also better (Fig. 3). An

example of linear trends for different number of species and

different SADs is shown in the Figs 4–8 in Appendix S2. The

same qualitative patterns ofDSAD
q andDSRS

q were observed for

simulations with side=512 (Fig. 1 inAppendix S2).

SIMULATED NEUTRAL COMMUNIT IES

Examples of the patterns simulated by the neutral/hierarchical

model are shown in Fig. 4. By definition, hierarchical commu-

nities havemore competitive species with lower index numbers,

and neutral communities have more abundant species with

higher index numbers, as determined by metacommunity

abundance (see Methods and model description in the Appen-

dix S1). With a greater degree of competitive hierarchy, one or

few species dominate and several rare species are scattered over

the landscape (Fig. 5). This produces amostly uniform pattern

of dominant species with rare species distributed at random. In

neutral communities, the most abundant species are not so

dominant (Fig. 5) and leave space for species with intermediate

abundances, producing a pattern of several aggregated species.

Aggregation is produced in this model only because dispersal

is mainly near the parent.

For both estimated Dq the R
2 values were very good: DSRS

q

was always R2 > 0�9 and DSAD
q had in almost all cases

R2 > 0�6 and a 50% or more of the cases greater than 0�9
(Table 2 inAppendix S2). Figure 6 shows an example ofDq fit-

ted using linear relationships for a metacommunity of 86 spe-

cies and a side of 256 sites; examples with different

metacommunity species and side values are given in Figs 9–13
inAppendix S2.

There are two groups of DSAD
q (Fig. 7): one composed of

neutral-like communities for q < 0�1 and another of more

hierarchical communities for q > 0�1. The curves for hierar-

chical communities were more separated for negative q than

for positive q, whereas this pattern was inverted in neutral

communities, with positive q having more different curves.

This reflects the patterns in SAD: hierarchical communities

have one or few relatively abundant species, resulting in

DSAD
q reaching 0 quickly, and no new abundant species

are found when changing scale. Neutral communities have

more species with intermediate densities, producing

DSAD
q [ 0 on the positive side.

Fig. 2. Generalized dimension spectra Dq of

simulated species spatial patterns. The points

are means of 10 simulated patterns using a

spatial grid of side = 256. A logseries or uni-

form species-abundance distribution (SAD)

was used, with 8, 64 and 256 species. Two

forms of generalized dimensions were esti-

mated: DqSRS, from species-rank surface

DSRS
q . DqSAD, estimated from SAD DSAD

q . I

use two spatial patterns: regular, the species

are distributed in vertical bands; randomized,

the spatial distribution of species was random-

ized.
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In theory, Dq have a constant value when q tends to infinity

(negative or positive). Here, DSAD
q spectra quickly reached a

constant maximum for negative q and a minimum for positive

q. This pattern was more pronounced with hierarchical com-

munities, which tended to have dominant species reflected on

the positive side, and rare species on the negative. When com-

munities are more neutral (q < 0�1) and there are more species

with intermediate densities, DSAD
q tended to reach the asymp-

totic valuesmore slowly in the negative side.

For DSRS
q , similar groups of neutral or hierarchical commu-

nities were also present (Fig. 7). We previously saw that DSRS
q

is more related to the spatial pattern than is DSAD
q , and thus,

we can interpretDSRS
q in terms of randomness and aggregation

of species. For hierarchical communities, negative-sideDSRS
q is

very close to 2, that is the dimension of a uniform surface, with

rare species exerting a very low influence on uniformly dis-

tributed dominants. For neutral communities, there are more

species with low tomedium densities, with greater aggregation,

and thus,DSRS
q is higher.

When q is positive, lower values of DSRS
q mean more-in-

tense spatial patterns. Communities with q = 1 are the most

hierarchical, with one dominant species and a few very rare

species (Fig. 6). For these communities, DSRS
q is closer to 2,

representing the uniform spatial distribution of dominant

species. When the metacommunity has more species, the

local community also has more species (Table 3 in Appendix

S2) and DSRS
q starts to deviate from 2 at lower q. DSRS

q for

the intermediate hierarchical case (q = 0�1) starts higher than
neutral at q near 0, but crosses neutral curves and ends in

the lowest place. The communities have more species that

also are more abundant, but still have few individuals; this

forms very sharp peaks in the SRS and produces a DSRS
q far-

ther from 2. The curvature of DSRS
q is thus more pro-

nounced when there are more species. For q less than 0�1,
communities are more neutral and have more species with

similar densities, forming softer valleys and peaks that result

in a DSRS
q intermediate between the two hierarchical cases.

Simulations with side = 512 exhibited similar patterns for

Dq (Fig. 14 Appendix S2).

STATIST ICAL POWER AND TYPE I ERRORS

To calculate the power of the methods, I compared communi-

ties with different q values; in this comparison, the alternative

hypothesis is true. Instead for estimating type I error, we need

to compare different runs of communities simulated with iden-

tical parameters. I talk of high power when its value is 0�75 or
higher, and low power when it is 0�5 or lower.
For DSAD

q and DSRS
q different ranges of q can be used. High

values of q in absolute terms should produceDqwith high vari-

ances, resulting in a higher spread of values obtained in differ-

ent simulation runs. Ranges of q between �10 and 10 or

narrower are generally used (Yakimov et al. 2008; Laurie &

Perrier 2011; Saravia, Giorgi &Momo 2012b;Wei et al. 2013),

but sometimes the applied range has been wider (Saravia,

Giorgi &Momo 2012a). I started using a q range of�24 to 24

and found that for this range type I error rates were, in all

cases, higher than the nominal significance level a = 0�05
(Table 4 in Appendix S2). As a statistical test is valid if the type

I error is lower or equal to a (Edgington 1995), to assure the

validity for these methods a narrower range should be used. I

thus used a q range between�10 and 10.

Using only one dimension of the spectra (DSAD
0 and DSRS

1 )

resulted in a power generally below 0�5 (Table 3) and a type I

error around 0�4. These high type I error values, much

greater than a, were expected due to the presence of spatial

autocorrelations in the dependent variable (Legendre et al.

2002). Parameter estimates can be corrected in different ways

(Legendre et al. 2002), but these procedures should not

increase the power of DSAD
0 and DSRS

1 .

Fig. 3. Linear fit of Zq(e) to estimate general-

ized dimensions (Dq) from simple species spa-

tial patterns with 64 species and a uniform-

abundance distribution. The spatial grid has a

side = 256 sites and two different spatial pat-

terns: regular, a regular spatial pattern with

species distributed in vertical bands of equal

width; randomized, the positions of species in

the grid are randomized. Two kinds of gener-

alized dimension were estimated: DqSRS cor-

responds the fit of DSRS
q (see text), and

DqSAD is the fit from the estimation ofDSAD
q

(see text). Zq(e) corresponds to the partition

function calculated for a box with side e, q is

themoment order.
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For communities with lower species numbers (11 species

in the metacommunity), the SAD comparisons had a con-

stant low power (Table 4) and also had low power compar-

ing communities with different degree of neutrality (Fig. 8);

as the number of points used in the test is the number of

species, the power is low thus no matter how different the

communities are. In contrast, the generalized dimensions

DSAD
q and DSRS

q had a high power, but type I errors also

greater than a. One way to alleviate this problem is to check

for a coincidence of the two methods SAD and Dq; another

would be to increase the number of points used inside the q

range, because Dq can be calculated for any real number.

Fig. 4. Spatial patterns generated with a spa-

tial neutral/hierarchical model. Rho (q) is the
parameter that determines the degree of neu-

trality. When this parameter is 0, the model is

completely neutral and there is no competitive

replacement of species. When q is 1, competi-

tive superior species always replaces inferior

ones and the model is completely hierarchical.

The Species number showed in each panel is

the number of species actually present in the

spatial patterns. The simulations use a meta-

community with a logseries-abundance distri-

bution with 86 species and a simulation grid

side = 256.

Fig. 5. Rank-abundance diagrams of com-

munities patterns generated with a spatial neu-

tral/hierarchical model with different number

of species in the metacommunity (labelled in

each subfigure). q is the parameter that deter-

mines the degree of neutrality. When this

parameter is 0, themodel is completely neutral

and there is no competitive replacement of

species. When q is 1, competitive superior spe-

cies always replaces inferior ones and the

model is completely hierarchical. The simula-

tions use a metacommunity with a logseries-

abundance distribution with 11, 86 and 341

species and a simulation grid side = 256, the

other parameters used were mortality

rate = 0�2, dispersal distance = 0�4 (2�5 grid

units) and colonization rate = 0�001. The

ranks were calculated with averages of species

densities over 50 simulations.
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Fig. 6. Linear fit of Zq(e) to estimate general-

ized dimensions (Dq) from spatial patterns

generated with a neutral/hierarchical model.

Rho (q) is the parameter that determines the

degree of neutrality. When this parameter is 0,

the model is completely neutral and there is no

competitive replacement of species. When q is

1, competitive superior species always replaces

inferior ones and the model is completely hier-

archical. Species is the number of species actu-

ally present plot. The simulations use a

metacommunity with a logseries-abundance

distribution with 86 species and a simulation

grid side = 256 sites.

Fig. 7. Generalized dimension spectra Dq of

spatial patterns generated with a spatial neu-

tral/hierarchical model. q is the parameter that

determines the degree of neutrality. When this

parameter is 0, themodel is completely neutral

and there is no competitive replacement of

species. When q is 1, competitive superior spe-

cies always replaces inferior ones and the

model is completely hierarchical. The points

aremeans, and vertical lines are standard devi-

ation of 50 simulated patterns. Simulations

use a metacommunity with a logseries-abun-

dance distribution with 11, 86 and 341 species.

The simulation grid side is 256, and the other

parameters are given in themain text.
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Here I used 21 points (Table 4) but that could be increased,

as the only restriction is the additional computational time

required. In simulated communities with more species (86

and 341 species metacommunity), the type I error fell below

a for all the methods and the overall SAD was slightly more

powerful (Table 4).

Differences between communities influence power (Fig. 8).

Note that with q < 0�1, the communities compared are more

neutral with a similar number of species and SADs. These

cases correspond to the first two rows of Fig. 8; the power in

most cases was below 0�5, and thus,DSAD
q andDSRS

q could not

discriminate communities. The exception was SAD for neutral

communities, where the metacommunity had 341 species, and

the power was near or >0�5. These are comparisons with a

higher number of points (~100) resulting in a greater power.
Communities with q ≥ 0�1 are more hierarchical and have

different numbers of species and SAD than communities with

q < 0�1. For these cases (last two rows of Fig. 8), the power

was high (over 0�75) in most cases. The comparison between

more hierarchical communities q ≥ 0�1, is different: SAD and

DSAD
q , had less power (below 0�25 in some cases), and DSRS

q

had the highest power.

Discussion

In this paper, I present a new macroecological metric DSRS
q

based on generalized dimensions and use model simulations to

compare it with other similar metrics:DSAD
q , SAD, SAR expo-

nent and information dimension.

While DSAD
q measures the change in SAD with scale, DSRS

q

represents the change in the spatial distribution of ranks of spe-

cies and is thus related to the spatial pattern of species and to

their abundance distribution. DSAD
q also reflects changes in

spatial pattern, butmy results suggest that it cannot distinguish

between regular and randomized spatial patterns. In contrast,

DSRS
q curves differed clearly between these patterns.

All Dq curves can be interpreted in terms of q, a parameter

that modulates the weight of abundant and rare species in the

distribution; Dq for positive q reflects more abundant species,

or dominance patterns in SAD, while Dq for negative q repre-

sents rare species patterns. An alternative way to analyse Dq

would be to split species into ranges of abundances and calcu-

late DSAD
0 or DSRS

1 . This has been done for biomass and forest

height spatial analyses (Seuront & Spilmont 2002; Kellner &

Asner 2009), but for species distributions, it has several draw-

backs. First, the species’ spatial distribution is analysed as a

whole, and it is quite possible that the complete set of species

fits power laws very well, but one or more single species do

not (�Sizling & Storch 2004). Secondly, rare species represent a

few points in space, and thus, the estimation of Dq will have a

high uncertainty. Thirdly, if we replace q by ranges of abun-

dance, the theory developed for Dq would not be valid (Harte

2001).

In neutral models, the SAR exponent depends on speciation

rate (in this case migration from a metacommunity), dispersal

distance and local community size (Chave, Muller-Landau &

Levin 2002; Rosindell & Cornell 2007; Cencini, Pigolotti &

Mu~noz 2012). I did not expect to find high statistical power

using the SAR exponent (DSAD
0 ) because I did not vary

Table 3. Power and type I error rate for t-test comparison of a single

dimension of the generalized spectra: the SAR exponent (DSAD
0 ) and

information dimension of the species-rank surface (DSRS
1 ). The test use

the standard deviation obtained in the regressions to fit generalized

dimensions. The number of comparisons to calculate the power is

n = 25 000 and for type I error n = 6125

Side

Metacommunity

no. species

Mean

no. species Type Power

Type I

error

512 11 5�96 DSRS
1 0�512 0�434

DSAD
0 0�498 0�494

86 36�54 DSRS
1 0�521 0�430

DSAD
0 0�445 0�426

341 111�31 DSRS
1 0�497 0�342

DSAD
0 0�494 0�436

256 11 5�90 DSRS
1 0�491 0�408

DSAD
0 0�471 0�424

86 32�27 DSRS
1 0�501 0�447

DSAD
0 0�474 0�388

341 76�57 DSRS
1 0�490 0�389

DSAD
0 0�443 0�363

Table 4. Power and type I error rate of Anderson–Darling statistic to

test hypothesis of differences in species-abundance distributions

(SAD), generalized dimension based on SAD (DSAD
q ) and generalized

dimension based on SRS (DSRS
q ). The power is calculated testing com-

munities with different q, and type I error is calculated for communities

with the same q. The P-values were estimated using 1000 randomiza-

tions. The number of points used for SAD comparisons is the number

of species found in the communities. The number of points used for

multifractal spectra corresponds to the q in the range �10 to 10

(n = 21), according to the following set q = {�10, �8, �6, �4, �3,

�2�5,�2,�1�5,�1,�0�5, 0, 0�5, 1, 1�5, 2, 2�5, 3, 4, 6, 8, 10}. The num-

ber of comparisons for the power calculations was n = 25 000 except

for SAD with side = 500 and metacommunity species = 11, where

some comparison with <3 species was skipped (n = 23 800). For type I

error, the comparisons were n = 6125 and the same exception applies

(n = 5846)

Side

Metacommunity

no. species

Mean

no. species Type Power

Type I

error

512 11 5�96 SAD 0�115 0�025
DSRS

q 0�720 0�102
DSAD

q 0�568 0�212
86 36�54 SAD 0�697 0�009

DSRS
q 0�680 0�014

DSAD
q 0�616 0�011

341 111�31 SAD 0�830 0�039
DSRS

q 0�688 0�000
DSAD

q 0�609 0�017
256 11 5�90 SAD 0�175 0�000

DSRS
q 0�654 0�068

DSAD
q 0�704 0�204

86 32�27 SAD 0�675 0�019
DSRS

q 0�657 0�025
DSAD

q 0�613 0�027
341 76�57 SAD 0�799 0�035

DSRS
q 0�670 0�030

DSAD
q 0�610 0�048
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migration or dispersal and did not make comparisons between

different community sizes. But I found high type I error rates

for DSAD
0 and DSRS

1 . This means that the statistical methods

should be improved, for instance by applying a correction for

autocorrelation to lower type I errors, and using a greater

number of boxes. In most cases, a range of different Dq values

exists, meaning that the distribution is a multifractal (Stanley

& Meakin 1988) and thus will not be well described by only

one generalized dimension. To compare communities, DSRS
q

and DSAD
q represent an improvement over comparisons made

with such as SAR exponent or information dimension, which

use only one dimension.

The SAD is themost studied biodiversity pattern in ecology,

but it is generally studied only at one scale. Here I used the

whole simulation area, and at this scale, the power of SAD is

comparable to that of generalized dimensions. Several studies

regard SAD as not very informative because many different

models can produce the same patterns (Chave,Muller-Landau

Fig. 8. Power of theAnderson–Darling test for the hypothesis of differences between simulated neutral/hierarchical communities. The test uses gen-

eralized dimensions curves calculated from species-abundance distributions (SAD) (DSAD
q ), generalized dimensions calculated from the species-rank

surfaces (DSRS
q ) and the SAD. The compared communities differ only in parameter q (across panels) that determines the degree of neutrality/hierar-

chy. The number of comparisons to calculate the frequency is 2500 in all cases. Simulations use a metacommunity with a logseries-abundance distri-

butionwith 11, 86 and 341 species; a grid side of 256 sites, the other parameters are given in themain text.
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& Levin 2002; Chisholm & Pacala 2010; Rosindell & Cornell

2013), but in my simulations, SAD could differentiate models

quite well, except for communities with low richness, where its

power was low. Generally, the performance of SAD depends

on the number of species used in the comparison. When the

number of species is around 100, SAD comparison is the only

method that can detect differences between very similar neutral

communities.

The analysis comparing competitive hierarchical communi-

ties highlights the ability ofDSRS
q to detect differences in spatial

patterns of rare species. Spatial pattern is interdependent with

the shape of SAD; for hierarchical communities, there are few

dominant species that form patches with sizes similar to the

simulation area, and rare species are scattered. This pattern is

enhanced by SRS, and thus, different communities can be

detected with high power. For neutral communities, the SAD

is more equitable, as there are more species with enough abun-

dances to form species clusters. DSAD
q and DSRS

q thus have a

high power to detect differences between neutral communities,

except when these communities are very similar. The advan-

tage of Dq over SAD it is that the power should be improved

by using a greater number of q values, and this possibility

should be the subject of future studies.

In summary,DSRS
q always had better fits thanDSAD

q and can

be applied in all the cases simulated here. It maintained a high

power comparing hierarchical communities when the other

methods failed. SADs also exhibited good performance, except

in a few cases noted above. I note, however, that a better

approach could be to use both DSRS
q and SAD, and perhaps

add other patterns as well (M€unkem€uller et al. 2012). For

these reasons, this newmacroecological metric could be a valu-

able addition to the already established ones and should be

used in the study of the scaling of SAD.
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