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SUMMARY

Between 2019 and 2020, during the country’s hottest and driest year on record,
Australia experienced a dramatic bushfire season, with catastrophic ecological
and environmental consequences. Several studies highlighted how such abrupt
changes in fire regimes may have been in large part a consequence of climate
change and other anthropogenic transformations. Here, we analyze the monthly
evolution of the burned area in Australia from 2000 to 2020, obtained via satellite
imaging through the MODIS platform. We find that the 2019–2020 peak is
associated with signatures typically found near critical points. We introduce a
modeling framework based on forest-firemodels to study the properties of these
emergent fire outbreaks, showing that the behavior observed during the 2019–
2020 fire season matches the one of a percolation transition, where system-size
outbreaks appear. Our model also highlights the existence of an absorbing phase
transition that might be eventually crossed, after which the vegetation cannot
recover.

INTRODUCTION

Bushfires are an intrinsic part of Australia’s landscape dynamics. Its natural ecosystems have evolved to

coexist with fires, andmitigation strategies to reduce their impact have been learned in themost vulnerable

areas.1 Yet, the 2019–2020 fire season was particularly catastrophic. It began in July 2019, at the end of the

country’s hottest and driest year on record, and wildfires were unprecedented in their spatial extent and

severity.2–5 In the eastern Australia states of New South Wales and Victoria, around 5.8 million hectares

of mainly temperate broadleaf forest were burned by a series of high-impact fires, many of which exceeded

a size of 100; 000ha and continued to burn for weeks after ignition. Several studies highlighted how this

abrupt departure from the historical trend may have been in large part a consequence of climate change

and other anthropogenic transformations.5–10 Furthermore, these high-impact fires had a devastating ef-

fect on Australia’s biodiversity. Of more than 830 taxa – comprising birds, reptiles, frogs, mammals, and

freshwater fish – around one-fourth lost to the fires between 10% and 50%of their Australian habitat, sixteen

of them lost between 50% and 80%, and three more than 80%.4

These drastic changes, with their catastrophic effects on vegetation and on biodiversity, are often associ-

ated with critical transitions, i.e., conditions that inevitably lead to large-scale fire outbreaks and subse-

quent widespread damage.11–14 Such behavior has been observed in many different systems ranging

from Amazon forests15,16 to Kalahari vegetation17 and more in general in tropical forests fragmenta-

tion.18,19 In physical systems with many degrees of freedom, these phenomena are well-known to appear

at the edge of phase transitions. When a system undergoes a continuous phase transition at a critical point,

scale-free behaviors described by power-laws are found – such as long-range correlations and diverging

susceptibility to external perturbations – because of the underlying scale-invariance that emerges at crit-

icality.20–23 This lack of a characteristic scale is a possible mechanism behind the abrupt appearance of

large and out-of-scale events, such as the high-impact fires experienced by Australia between 2019

and 2020.

In this work, we analyze the monthly evolution of the burned area in the East and Southeast temperate

broadleaf and mixed forests of continental Australia.24 These data, spanning from November 2000 to

June 2020, are obtained via satellite imaging through the MODIS platform,25 and allow us to analyze the

spatiotemporal properties of fire propagation. Unsurprisingly, we find that the 2019–2020 peak of the

burned area exceeds the historical data. Then, thanks to the high spatial resolution of the data, we study

the distributions of spatially-separated clusters of burned area, as well as their evolution in time. By

applying tools from Statistical Physics, we find that during 2019–2020 the distribution of fire outbreak sizes
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Figure 1. The cumulative distribution of the fire sizes at different years

(A) The time series of the normalized number of burned pixels per month in the East and Southeast temperate broadleaf and mixed forests of continental

Australia, NburnedðtÞ, from 2000 to 2020, normalized by the total number of pixels. Years are defined as the twelve months occurring between June and May.

The year 2019–2020 largely exceeds the peaks of the previous twenty years.

(B–E) For agiven year,we cancompute thecumulativefire sizedistributiononanearest-neighborbasis. Even thoughpeaks, suchasduring2002–2003, oftendisplay

either longer tails in the distribution or are dominated by few, very large fires, a distinctive power-law behavior emerges during 2019–2020. See also Figure S2.
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is compatible with a power-law, and it is invariant under spatial coarse-graining. Our results suggest that

such fires lacked a characteristic size, and thus the system may have been poised at a critical point of their

spreading dynamics.22

To understand the drivers and the type of such critical transitions, we introduce a paradigmatic spatial model

that describes the concurrent spreading of fires and vegetation over a two-dimensional lattice. In a regime

where the timescale of fire propagation is much faster than the vegetation one, our numerical simulations sug-

gest that the model predicts the crossing of a percolation-like transition26 to a more arid climate, where

spreading becomes easier for the fires and harder for the vegetation. Differently from self-organized forest-

fires models,27–33 the dynamics of our model depends only on two effective ecological parameters. When

these parameters cross the percolation-like critical point, the features of the model, such as the distribution

of the fires’ sizes, are qualitatively comparable to the ones observed during the bushfire season of 2019–

2020 in Australia. This suggests that this kind of phase transition in the vegetation-fires dynamics may have

been at the heart of the emergence of scale-free fire outbreaks. Our paradigmatic model encompasses

another kind of critical point as well, that corresponds to an absorbing phase transition34,35 after which the

vegetation cannot recover. Although possibly unrelated from an ecological perspective, it foreshadows

how critical points may lead to further abrupt and fundamental changes in the fire-vegetation dynamics.

RESULTS

Fire sizes distributions

In order to shed a light on how the 2019–2020 bushfire season emerged, we analyze the time series of the

burned area obtained from 236 monthly satellite images of Australia, spanning from November 2000 to

June 2020 (STAR Methods and Figure S1). Each month is represented by a binary matrix Mt , whose entries

ðMtÞij represent an area of 500m2 and are set to 1 if the corresponding pixel matches an area that has

burned in the span of that month.

The exceptional nature of the 2019–2020 events is perhaps already striking from the time series of the total

burned area spanning the last 20 years,NburnedðtÞ =
P
ij

ðMtÞij , plotted in Figure 1A. As a gauge of the extent
2 iScience 26, 106181, March 17, 2023



Figure 2. Properties of the time series of the number of fires and their maximum size

(A) Plot of NfiresðtÞ, the number of fire outbreaks in a given month, and of MfiresðtÞ, the largest outbreak of a given month.

Both timeseries have been normalized by their maximum value in order to compare them.

(B) The phase of the Hilbert transform of both the time series of the number of fires and of the maximum fire size show a

major synchronization during 2019–2020.

(C) Similarly, the corresponding amplitudes suggest that during the 2019–2020 fire season a very large number of fires

coexisted together with extremely large ones. This behavior is indeed captured by the power-law behavior of the fire size

distribution.

(D) The Kuramoto index between the phases of the Hilbert transform of ncðtÞ and ofmcðtÞ and the correlation between the

respective moduli. A clear synchronization emerges during 2019–2020, and in the same year the correlation between

the moduli spikes as well. This behavior is compatible with the power-law cumulative distribution of the fire sizes found in

the same year.
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of the damage, less than half of the pixels were burning during the second largest peak, which took place in

the season 2002–2003. Most importantly, given the spatial nature of our data, we can also compute the

cumulative distribution of clusters of burned pixels for a given month - on a nearest-neighbors basis - start-

ing fromMt . Hence, for each month and each matrixMt , we compute the number of clusters ncðtÞ and their

sizes fAðiÞ
c gnc ðtÞi = 1 . We identify nc with the number of separate fire outbreaks, and A

ðiÞ
c with the corresponding

outbreak sizes. In particular, we can compute the corresponding cumulative fire sizes distribution during a

given year (STAR Methods), defined from June to May to include the summer of the Southern Hemisphere.

These distributions, shown in Figures 1B–1E, typically display longer tails during peaks of the burned

area NburnedðtÞ, whereas the sizes are exponentially suppressed if the overall burned area is low (see also

Figure S2). In particular, higher peaks of NburnedðtÞ — e.g., the 2002–2003 or the 2019–2020 season —

are associated with distributions that span a wide range of sizes. Although it is tempting to relate such

distributions to power-laws, the finite size of the system and the limited data makes detecting such power

laws a non-trivial task.36–39 Hence, it is paramount to understand whether the distribution of 2019–2020,

characterized by a cutoff that is typically associated with the finite size of the system (Figure 1C), is quan-

titatively different from the ones of previous years. Notably, the range of fire sizes of previous years — e.g.,

2002–2003 or 2006–2007 — show that fires larger than the ones in 2019–2020 took place, see Figures 1B

and 1D.

Therefore, to gain further insights into the fire dynamics, we extract the time series of the number of fires

per month NfiresðtÞ = ncðtÞ - i.e., the number of connected clusters of each matrixMt - and of the size of the

largest fire MfiresðtÞ (i.e., the size of the largest connected cluster of each matrix Mt ). In general, we do not

expect these timeseries to be synchronized and, indeed, we typically see that a high number of clusters in a

given year usually does not imply large clusters as well, as we can see in Figure 2A. To study the relation in

time betweenNfiresðtÞ andMfiresðtÞ, we perform a dynamical analysis of these two timeseries by introducing

the phase and the modulus of their Hilbert transform (STAR Methods). We plot them in Figures 2B and 2C.

Then, for every year, we compute the associated Kuramoto index,40 which measures the synchronization

between the number of fires and the maximum fire sizes, and the moduli correlation (see Figure 2D and

STARMethods for further details). We find that during the 2019–2020 season Australia experienced neither
iScience 26, 106181, March 17, 2023 3
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the largest fire in our data nor the largest number of fire outbreaks - but rather a major synchronization

between the two time series emerges. That is, both the number of fires and the size of the largest fires

suddenly increased with respect to previous years. Such presence of many and very large outbreaks at

once can be interpreted as a distinctive proxy of the widespread damage the outbreaks caused. Further-

more, it suggests that the distribution we see in 2019–2020 may be associated with features that we expect

to see in power-law distributions and scale-free phenomena. Crucially, such a scale-free distribution might

be tightly related to the dramatic impact that the 2019–2020 bushfire season had on the vegetation and on

biodiversity. In fact, fire sizes that are distributed as a power law give rise to both a few large fire clusters,

corresponding to the distribution’s long tails, and many smaller ones, the bulk of the power-law distribu-

tion. As the former devastated entire regions, the latter created pockets of vegetation fuel in other areas

that could possibly act as an ignition to the next high-impact fire. Such a catastrophic departure from the

historical trend suggests that a fundamental shift in the underlying dynamics might have occurred. In the

next section, we will test the hypothesis that the 2019–2020 distribution is compatible with a scale-free one

by introducing a spatial coarse-graining.
Spatial coarse-graining

The spatial resolution of our data allows us to carefully test the hypothesis that the power-law distribution

we see during 2019–2020 is a signature of an underlying scale-invariance. Here, we draw inspiration from

the Renormalization Group concepts20,41–43 and implement the so-called coarse-graining (CG) step to

understand if such scale-invariance is present. We perform, at each time, a spatial CG through a block-

spin transformation of Mt , by grouping together nearby pixels in 232 plaquettes. We then define the

new super-pixels through a majority rule, in such a way that if the plaquette contained a majority of burned

pixels, the corresponding coarse-grained pixel will be burned as well, and vice-versa (STAR Methods).

Then, we follow the properties of the system along these repeated transformations. In fact, a coarse-grain-

ing transformation amounts to studying a system at different spatial scales. If the system is truly scale

invariant, we expect that its properties will not change under repeated CG steps. Hence, and compatibly

with the quality of the data, if the distribution of the fire size is a true power-law it will remain a power law

after one or more CG transformations, with a corresponding finite-size scaling correction (STAR Methods).

In principle, one should iterate the coarse-graining indefinitely, to unravel the properties of its fixed points -

however, with real data we are limited by the finite size of our system. Because each of the coarse-graining

steps we are employing reduces the linear size of the system by half, after four CG steps we are left with a

matrix that contains only z0:4% of the initial number of pixels. If only few but large fires are present in the

original system, this coarse-grained version will be dominated by system-sized outbreaks. On the other

hand, if many but small fires characterized the initial state, the coarse-graining transformations will drive

the system to a configuration where virtually no fires are present. In particular, the behavior of probability

distributions along the coarse-graining is particularly relevant in determining the properties of a critical

system.44

In Figures 3A–3C we show an example of the effect of three coarse-graining steps on a sub-region of the

matrix M =
P
t
Mt where each entry indicates the total number of times the corresponding pixel has been

burned. As we can see, the spatial coarse-graining preserves some features of the original matrix, although

the number of pixels is reduced by a factor 24. As a reference, in Figure 3D we show once more the time

series of the burned areaNburned and in Figures 3E–3H we follow the cumulative distributions of the fire sizes

along the coarse-graining for selected years.

For instance, during the 2007–2008 season or the 2015–2016 season the CGquickly suppresses the fire sizes

distribution and only small fires are left. Of interest, if we consider a season associated with a marked peak

of the burned area, such as the 2002–2003 season in Figure 3E, we see that, although the distribution keeps

its distinctive long tails along the coarse-graining, the bulk of the distribution changes and no evident cut-

off appears. On the other hand, and crucially, during the 2019–2020 season the bulk of the power-law dis-

tribution of the fire sizes is left invariant, whereas the cut-off associated with successive CG steps is poised

at smaller and smaller system’ sizes (see STAR Methods).

Quantitatively, in Figure 3I we show that maximum-likelihood fits36 of the distributions at different levels of

coarse-graining in 2019–2020 the exponents remain compatible with one another. Then, we repeat the

same procedure for the other years and plot the corresponding exponents in Figure 3J. Taking into account
4 iScience 26, 106181, March 17, 2023



Figure 3. The properties of the data under spatial coarse-graining

(A–C) An example of the effect of three coarse-graining steps on the overall number of fires per pixel in a sub-region of our data. The more steps are

performed, the less the number of pixels left.

(D) The time series of the burned area Nburned plotted in Figure 1, shown as a reference.

(E–H) The coarse-graining corroborates the presence of a very robust scale invariance during 2019–2020, whereas in the previous years the shape of the

distribution is significantly changed by the CG transformation. For instance, during 2007–2008 and during 2015–2016 the distribution of the fire sizes is

exponentially suppressed, and after four coarse-graining steps there are almost no more fires to begin with. The distribution of 2002–2003, although not

exponential, lacks the expected finite-size cutoffs and displays changes in the bulk of the distribution along the coarse-graining.

(I) Power-law fit of the coarse-grained distributions in 2019–2020 using maximum-likelihood fitting methods.

(J) If we fit a power-law to each year, we find that 2019–2020 displays the most consistent exponents at different coarse-graining steps. For comparison, in,

e.g., 2006–2007 the exponents vary in the range z½1:5; 1:8�, which is almost four times larger than the one found in 2019–2020. See also Figure S3.
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the SD of these exponents, only the distribution associated with the 2019–2020 season consistently displays

a power-law behavior with the same exponent at all CG steps.

These results strongly support the power-law nature of the 2019–2020 distribution, revealing a unique un-

derlying scale-invariance in the spatial structure of the fire outbreaks taking place in that season. This scale-

invariance, in turn, manifests itself dynamically as a synchronization between the number of outbreaks and

their maximum size. Altogether, our data suggest that the emergent properties we observe are related to a

phase transition. Thus, a fundamental question arises: what has driven the 2019–2020 fire dynamics close to

what appears to be a critical point?
Paradigmatic model for the vegetation-fires dynamics

To qualitatively understand the abrupt changes observed during the 2019–2020 bushfire season, we introduce a

minimal stochastic model of the forest-fire class.28 Differently from classical forest-fire models that display self-

organized criticality31,45,46 and multistability,47 we describe the concurrent stochastic spread of both fires and

vegetation between neighboring nodes of a network. Although extensions of the forest-firemodel with different

vegetationgrowth andwith climate effects have beenproposed,48,49 our approach seeks to include onlyminimal

features tounderstandwhether theyareable toexplain thepatternsobserved inourdata.Withoutfires, the vege-

tationV is free tospreadto its nearest neighborsat a ratelV onagivengraph - for instance, a 2-dimensional lattice

- andspontaneouslydisappearswithadeath ratedV . Then, a fireF can igniteon a vegetation sitewith ratebF and

spreadswith a rate lF over an effective topology that is determinedby the structure of the vegetation clusters. At

the same time, the vegetation cannot occupy a site with a fire F, thusboth the topologyof the fire layer andof the

vegetation layer change dynamically with time. Once a fire is over, with a rate dF , the corresponding site will

become an empty siteB for the vegetation layer, andwill not be present in the fire layer. Hence, although arche-

typal, our model is described in terms of few parameters that can be thought of as functions of environmental

conditions.

Notably, a similar model was proposed by Zinck et al.50 to analyze data from the Canadian Boreal Plains.

However, the modeling approach proposed by the authors did not include nearest-neighbor spreading

nor a death rate for the vegetation. As we will see, in our model, these parameters are fundamental in

shaping the spatial structure of fires. Indeed, heuristically, we can think of our model as defined on a

multi-layer network.51–53 In this depiction, the topology of the vegetation layer is fixed, but the vegetation

sites dynamically govern the topology of the fire layer, as we sketch in Figure 4A. Hence, we expect the

interplay between the spatial spreading of both vegetation and fires to be a crucial feature of our model,

whose rates are shown in Figure 4B. The vegetation alone obeys

Vi +Bj˛ vi/
lV

Vi +Vj

Vi/
dV

Bi ;

(Equation 1)

where i is a site and vi is the set of the neighbors of i. These reactions for the vegetation dynamics, thus

correspond to the well-known contact process,34,35,54,55 an archetypal model of absorbing phase transi-

tions. We highlight that, differently frommost SOC and previous models, we do not include an immigration

term for the vegetation, i.e., an external field in the contact process. This amounts to assuming that vege-

tation can only spread from other vegetation sites, rather than reappearing in random sites. On top of this

dynamics the fire spreading is determined by the reactions

Fi +Vj˛ vi/
lF

Fi + Fj

Vi/
bF

Fi

Fi/
dF

Bi:

(Equation 2)

These reactions, if considered independently from Equation (1), represent instead a contact process with

resource depletion - meaning that the empty sites are unavailable for fires to spread.
Model simulations and timescale separation

We perform exact stochastic simulations of the model on a 2-dimensional lattice using the Gillespie algo-

rithm (STAR Methods).56 Crucially, for the model to be reasonable, we must assume that the vegetation

dynamics is much slower than the one of the fires and that the birth rate of the fires bF is typically very
6 iScience 26, 106181, March 17, 2023



Figure 4. The fundamental properties of our model

(A and B) A depiction of the model dynamics as a multi-layer graph and the corresponding transition rates.

(C) On a 2D lattice the model displays a charge-discharge behavior if the vegetation dynamics is much slower than the fire

one, and fires are relatively rare events. Here ðdF ;bF ; lF Þ = ð25; 10� 5; 500Þ and ðdV ;lV Þ = ð0:5; 3Þ.
(D and E) The vegetation layer undergoes an isotropic percolation transition at zPercV z2:63 where a spanning cluster

appears. In (D) we plot the size of the largest vegetation cluster cmax
V and in (E) the mean vegetation cluster size cV , which

peaks at the transition. Both the plots are from a 2503250 lattice (see Figure S4).

(F and G) If we consider fires that spread over a fixed vegetation configuration (STAR Methods), (F) below the percolation

threshold zV < z
perc
V the cumulative distribution of the fire size SF is always exponentially suppressed due to the small

vegetation clusters. Above it (G), the fires may spread on a spanning cluster, and therefore we have system-size outbreaks

if zF is small enough.

(H and I) Comparison of the analytic solution of the mean field equations and a stochastic simulation on a fully connected

network with 500 nodes. (H) With parameters ðdF ;bF ; lF Þ = ð1; 0:5; 10Þ and ðdV ; lV Þ = ð0:1; 0:5Þ the absorbing state, i.e., the

empty configuration is the stable mean-field solution.

(I) For ðdF ;bF ; lF Þ = ð10; 0:1; 100Þ and ðdV ;lV Þ = ð1; 3Þ, instead, noise-induced oscillations around the mean-field

stationary values emerge. Notably, the mean-field approximation is not able to predict the charge-discharge behavior

described above, which is a consequence of spatial effects that are thus fundamental in our model.
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small.50 In Figure 4C we show that the model in this range of parameters indeed displays a charge-

discharge dynamics, with long periods of almost undisturbed vegetation spreading followed by shorter

periods of fire spreading following the rare ignition of an outbreak.

This timescale separation limit corresponds to the assumption that the vegetation configuration does not

change during the propagation of a fire. Therefore, we study how a fire propagates on top of a fixed sta-

tionary vegetation configuration. In this scenario, the phase space is described by the adimensional param-

eters zF = dF=lF and zV = lV=dV (STAR Methods). A small value of zF gives rise to fires that are extremely

effective at spreading and, vice-versa, a large value of zV implies a quick vegetation regrowth. Remarkably,
iScience 26, 106181, March 17, 2023 7
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because the vegetation layer in the absence of fires follows a simple contact process, we expect a perco-

lation transition at zpercV z2:6, as recently shown with numerical simulations.57 At this value, a system-size

cluster of vegetation appears, coexisting with a significant number of distinct, but smaller vegetation

clusters (Figures 4D and 4E). At zV = z
perc
V , in particular, if L/N an infinite cluster of vegetation appears.

If we call cV the vegetation cluster size and nðcV Þ the number of vegetation clusters of size cV , we can define

the mean vegetation cluster size ratio between the first two moments as

cV =

P
cV
ðcV Þ2 nðcV ÞP
cV
cV nðcV Þ (Equation 3)

where the sum runs overall vegetation clusters. This quantity, which we plot in Figures 4 expected

to diverge at the percolation transition because of the scale-free nature of the vegetation cluster

sizes. In fact, in percolation theory, this is nothing but the mean cluster size c =
P
cV

cVwcV , with wcV =

cVnðcV Þ=
P
cV

cVnðcV Þ the probability that a vegetation site belongs to a cluster of size cV , which displays a

power-law divergence close to the percolation threshold.26

This transition has a crucial impact on the cumulative distribution of the fire sizes sF , as we see in Figures 4F

and 4G. In fact, below the percolation transition of the vegetation, fires are severely limited by the size of

the vegetation clusters, and thus the distribution of sF is exponentially suppressed even at small zF . On the

other hand, above the percolation threshold, the vegetation clusters tend to be larger, and fires can be

large if zF is small enough. This suggests, as highlighted in,50 that a critical transitionmay underlie the vege-

tation-fires dynamics.

Although this percolation-like transition emerged from the spatial nature of our model, we can also solve it

analytically in a mean-field approximation, which amounts to ignoring such spatial features to begin with

(STAR Methods). Yet, the mean-field solution allows us to reveal the presence of yet another critical point,

an absorbing phase transition.34,35,55 This phase transition separates a phase in which themean-field stable

configuration predicts a non-zero density of both fire and vegetation from a phase in which the stable

configuration is the empty one, see Figures 4H and 4I. Crucially, the mean-field picture is drastically

different from a spatially embedded model. Indeed, the spatial structure significantly changes the way fires

spread because of the modulation of the underlying vegetation structure, leading to isotropic percolation

which will play a fundamental role.
Model coarse-graining and the emergence of scale-free fires

Simulations of the model allow us to study the properties of the area burned by fires at different values of

ðzV ;zFÞ. In particular, in Figure 5A we show the behavior of the ratio between the average fire size CsF D and

the average vegetation cluster size CcV D observed in configurations with given parameters ðzV ; zFÞ. This
parameter is fundamental because it helps us understand the potentially damaging effects of the fires

on the underlying vegetation substrate. Whenever CsF D=CcV Dz1, it implies that a fire that originates in a

given vegetation cluster has a non-vanishing probability to burn the entire cluster.

In Figure 5A we plot another relevant quantity as well - the black dotted lines represent the contour lines of

~c = smax
F 3 ncV , where ncV is the number of vegetation clusters. This quantity is particularly significant

because ncV can be interpreted as a rough estimate of the number of possible fires in the system, whereas

smax
F tells us how large they can be. In the data, these two quantities both reached high values at the same

time during 2019–2020.

In order to study the behavior of the fire sizes distribution under the same spatial coarse-graining applied in

the data, we choose n0F = 105 fire seeds in a large lattice of linear size L = 1000 (STAR Methods). Then, we

analyze the resulting burned area in a given point of the phase space ðzV ;zFÞ. In particular, we look at the

distribution of the fire sizes and, thanks to the large size of the lattice, at how it changes along repeated CG

transformations. We find four different regimes, shown in Figures 5A–5G. If zV is high enough, typically the

vegetation can spread effectively and regrow any burned vegetation. Yet, if zF is low, fires can propagate

almost unboundedly owing to the underlying large vegetation clusters. The resulting distributions, shown

in Figure 5G), are therefore dominated by very large fires. Indeed, since for zV > z
perc
V a spanning cluster is

present, vegetation sites that are far away are likely connected and fire can spread from one to the other.
8 iScience 26, 106181, March 17, 2023



Figure 5. The properties of the timescale separated model and its behavior under spatial coarse-graining

(A) At a given set of parameters ðzV ; zF Þ we plot the ratio between the mean fire size CsF D and the mean size of a vegetation cluster CcV D in a 2503 250 lattice.

The black dotted lines represent contour lines of ~c (the product of the number of vegetation clusters ncV and the maximum fire size smax
F ), which is maximized

around the percolation transition z
perc
V for low enough values of zF .

(B–G) We seed n0F = 105 fires on a lattice with linear size L = 1000 in order to study the distribution of the fire sizes sF and the corresponding coarse-grained

distributions.

(B and C) At low values of zV , the cumulative distribution of the fire sizes is exponential and is further suppressed along the coarse-graining at all values of zF .

(D and E) At zpercV , if zF is low enough the fire size distribution becomes a power-law that is invariant along the coarse-graining.

(F and G) For high values of zV , on the other hand, the system is dominated by few large clusters of vegetation, and the corresponding large fires are

highlighted by the coarse-graining. This regime is not particularly realistic at low zF , because it would require climate conditions that allow for large fires, i.e.,

a warm and arid climate, but at the same time for an extremely effective vegetation spread.
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This regime is perhaps unrealistic because it leads to extremely large fires in an otherwise vegetation-rich

environment. Yet, a similar dynamics was observed in fire-prone communities where species with post-fire

recruitment have the most flammable canopies.58

On the other hand, a more realistic regime is described by a high zV and a high zF as well. This regime

corresponds to environmental conditions that favor a vegetation-rich system and suppress fires, and

therefore we expect to see a small burned area. In fact, as we see in Figure 5F, fires are small as they

are not able to propagate effectively, not even on the underlying spanning cluster of vegetation sites.

Crucially, in both these regimes (Figures 5) the coarse-graining accentuates the tails of the fire size dis-

tribution, because the coarse-graining will unravel the largest fires that propagate on the vegetation

spanning cluster.

On the other hand, if zV is low, vegetation regrowth is typically suppressed. In this case, when zF is high,

fires tend to be small as we see in Figure 5B, but so do the clusters of vegetation. Indeed, CsF D= CcV D can
dangerously increase because substantial parts of the underlying vegetation clusters can burn even at

high zF . Finally, when zF is also low, not only the vegetation clusters can hardly regrow, but a fire can sys-

tematically burn the entire cluster in which it originates because CSF D=CCV Dz1. This regime is not sustainable

in the long time— the fires are likely to outpace the vegetation regrowth and eventually desertification will
iScience 26, 106181, March 17, 2023 9
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take place. Notably, this regime cannot be distinguished from the distribution of the fire sizes alone, in Fig-

ure 5C, which stays exponential owing to the lack of large vegetation clusters.

The vegetation percolation transition lies in between these regimes, and it is here that power-law

distributed fires emerge at low enough zF (Figures 5D and 5E). In fact, at this point we see a distinctive

scale-invariant configuration emerging following a power-law distribution with an invariant bulk under

spatial coarse-graining. Moreover, this is also the region where max sF3ncV is maximized, because the

system can experience large fires coexisting with a large number of clusters of vegetation. Therefore,

the features that we observe during the 2019–2020 fire season are best described by our model in a

timescale separation approximation close to the vegetation percolation transition zV = z
perc
V , with small

fire suppression zF . Note that in this regime, CsF D=CcV D remains small. However, the mean itself is not repre-

sentative in the presence of scale-free distributions, hence, it is not a reliable index of fire damage anymore.

DISCUSSION

How did Australia reach such a critical point? Although our modeling approach is paradigmatic, it provides

a clear physical interpretation of its control parameters zV and zF . Indeed, their value is determined by

climate conditions. Therefore, prolonged droughts, higher temperatures, and a more arid climate - all

recognized as contributors to the 2019–2020 bushfire season6,9,10 - might have pushed both zV and zF to

lower and lower values, eventually reaching and crossing the percolation transition between 2019 and

2020. Notably, the 2019–2020 years has been unusually hot and dry in part due to natural meteorological

phenomena, such as a shift in the polar winds above Antarctica and one of the strongest positive swings in

the Indian Ocean Dipole. The former contributed to stratospheric warming, which in turn contributed to

bringing hot, dry weather to much of Australia. The latter, in its positive phase, may have led to a reduction

in rainfall over the southern and most northerly regions of Australia.6 However, on top of, and possibly as a

cause of, all this natural variation, global warming is making the country even hotter and drier,59 with the

devastating effects that we highlighted in this work.

Finally, the mean-field analysis and the vegetation layer of our paradigmatic model predict the presence of

yet another critical point, one of a very different nature associated with the absorbing phase transition of

the contact process34,35,54,55 at lV=dVhzabsV z1:6. This phase transition separates a phase in which the only

stable configuration is the absence of vegetation, and a phase in which vegetation is present.60 Crucially,

with the addition of the fire dynamics, a slow enough vegetation spreading implies that fires at high values

of zF can burn large clusters of vegetation. This scenario may push the system to a state in which the vege-

tation goes extinct. Such states are much harder to reach in more realistic and highly complex dynamics of

fire spreading in forests. For example, one should consider that broadleaf Australian forest species, such as

Eucalyptus, have resilience and resistance traits, like re-sprouting and seed banks, that allow for a rapid

post-fire recovering even in intense fire-regimes.61,62 Yet, repeated fires with short return times would

cause the exhaustion of these capacities.60 These considerations do suggest that the isotropic percolation

transition observed during the 2019–2020 bushfire crisis may foreshadow a worsening condition that, in the

far future, might push the system to a forest savanna-like type of transition.63,64

Overall, our results suggest that the unprecedented bushfire season that Australia experienced between

2019 and 2020, with outbreaks appearing at all scales, is compatible with a phase transition in the vegeta-

tion-fires dynamics driven by a worsening climate. Our work shows how phase transitions and critical points

play a fundamental role in shaping this dynamics, and their presence and consequences will be more and

more relevant as climate change will quickly deteriorate the climatic conditions.

Limitations of the study

Future works should aim to develop quantitative methods to infer the values of the model’s parameters

from data, both from both fires spreading and vegetation evolution. Although the present study lacks

such inference steps, procedures such as simulation-based inference65 may be well-suited to this aim. In

particular, ecological and environmental drivers evolve over time, both owing to seasonality and climate

change. This would amount to prescribe a dynamics for the parameters zF and zV of our model, as well

as bF , which are instead considered constant in our analysis. Changes in these parameters over time

may affect the dynamics, creating feedback effects that are taken into account in the present study.

Notably, quantities from Information Theory may be a promising extension to disentangle the environ-

mental effects from the vegetation-fire interaction.66 It will be crucial to account for and disentangle
10 iScience 26, 106181, March 17, 2023
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contributions coming from natural variations and from the anthropogenic impact, in order to assess

mitigation strategies that are becoming more and more vital. Furthermore, here we only apply from the

Renormalization Group in the form of coarse-graining and finite-size scaling. It will be of particular interest

to consider other phenomenological approaches to the Renormalization Group, beyond simple coarse-

graining.67 Finally, it will be paramount to apply the analysis carried out in this work to other areas of the

world where large and extended fire outbreaks are appearing.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Code for downloading MODIS data Zenodo repository https://doi.org/10.5281/zenodo.7541674

Code for simulating of the model Zenodo repository https://doi.org/10.5281/zenodo.7540390

R: A Language and Environment for Statistical

Computing v4.1.0

R Foundation for Statistical Computing https://cran.r-project.org/

Python version 3.6.9 Python Software Foundation https://www.python.org

Google Earth Engine Google Inc. https://code.earthengine.google.com/

NASA Moderate-Resolution Imaging

Spectroradiometer (MODIS) burnt area

Collection 6 product MCD64A1

NASA https://modis-land.gsfc.nasa.gov/pdf/

MODIS_C6_BA_User_Guide_1.0.pdf
RESOURCE AVAILABILITY

Lead contact

Further information and requests should be directed to and will be fulfilled by the lead contact, Samir Su-

weis (samir.suweis@unipd.it).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� This paper analyzes existing, publicly available data from the NASA MODIS platform. Accession

numbers for the datasets are listed in the key resources table.

� All original code has been deposited at Zenodo and is publicly available as of the date of publication.

DOIs are listed in the key resources table.

� Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
METHOD DETAILS

Data collection

We defined the region of study as the East and Southeast temperate broadleaf and mixed forests of con-

tinental Australia using the ecoregions defined by Dinerstein,24 accessible at http://ecoregions2017.

appspot.com/, which represents an area of 48$106 ha (see Figure S1). For this region, we estimate the

burned areas using the NASA Moderate-Resolution Imaging Spectroradiometer (MODIS) burnt area

Collection 6 product MCD64A1,25which is a monthly product with a 500m pixel resolution. We downloaded

the images, using Google Earth Engine, as geoTIFF and then we converted them to a binary matrix (circa

4000x8000) using the R statistical language.68 Then, for each month we have a binary matrix Mt , whose

pixels represent an area of 500 m2 and can be either 1 - if there has been a fire in that pixel in the span

of that month - or 0 - if no event occurred, meaning that no burned area was detected.

Cluster distributions

We define a cluster of a binary matrixMt using a nearest-neighbors connectivity, i.e. the pixels that belong

to a cluster are defined using the connectivity matrix

Cbasis =

0
@ 0 1 0

1 1 1
0 1 0

1
A (Equation 4)
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which defines the usual nearest neighbors of a 2-dimensional lattice. We also repeated the analysis

described in the main text using a next-nearest-neighbors connectivity and the results do not change

significantly. Therefore, for each matrix Mt we end up with a number of clusters ncðtÞ and the areas of

each cluster fAðiÞ
c gnc ðtÞi = 1 . Then the cumulative fire size distribution of Mt can simply be evaluated as

PðsFÞhPðAc > sFÞ =
Xnc ðtÞ
i = 1

q
�
AðiÞ

c � sF
�

ncðtÞ (Equation 5)

where qð $Þ is the Heaviside function. To evaluate yearly distributions, we pooled the cluster sizes from all

matrices Mt of a given year. This amounts to assuming that the clusters found in subsequent months are

independent. Indeed, we find that the overlap between burned pixels in Mt and Mt + 1 is always small,

with respect to the number of burned pixels.
Cluster dynamics

We can exploit the timeseries of both the number of clusters and their areas to probe the underlying prop-

erties of the fire dynamics. In particular, we look at the number of clusters ncðtÞ = NfiresðtÞ and the area of the

largest clustermcðtÞ = maxifAðiÞ
c gnc ðtÞi = 1 = MfiresðtÞ. We normalize both these timeseries by dividing them by

their maximum value, in order to make them comparable (Figure 2A). Other normalizations, such as a stan-

dard z-score, give essentially the same results. In order to understand how the evolution of these two times-

eries relates in time, we introduce the Hilbert transform of a real-valued timeseries xðtÞ as

H½xðtÞ� = xðtÞ+ i

p
lim
ε/0

Z N

ε

xðt + tÞ � xðt � tÞ
t

dt (Equation 6)

which is a complex timeseries. Thus we can compute its phase 4xðtÞ = arctan Im½H½xðtÞ��
Re½H½xðtÞ�� and its modulus

rxðtÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Im2½H½xðtÞ��+Re2½H½xðtÞ��

q
and how they change in time (Figures 2B and 2C).

We can further quantify the relations between ncðtÞ and mcðtÞ by looking at the Kuramoto index40 of their

Hilbert transforms and at the correlation between the corresponding moduli. We define the Kuramoto in-

dex on a given year as

Kyear =
��Ce4nc ðtÞ�4mc ðtÞDyear

�� (Equation 7)

and the correlation between the moduli as

Cyear =
Crncrmc

Dyear � Crnc DyearCrmc
DyearffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ

i˛ fmc ;ncg
h
Cr2i Dyear � CriD

2
year

ir : (Equation 8)

In Figure 2D we do indeed see that Kyear becomes significantly close to 1 during 2019–2020, hence the two

timeseries are highly synchronized during the year. Similarly, the correlation between the moduli has a pos-

itive spike in the same period. It is worth noting that this is true even if in the original timeseries neither the

number of clusters nor the size of the largest one are maximal during 2019–2020. The fundamental change

in the behavior of the system is that, during this year, both of them peak in a synchronized fashion, which

leads to the power-law distribution shown in the main text.
Spatial coarse-graining

A quantitative and powerful way to assess the scale-invariance of a system is given by a properly defined

coarse-graining procedure.20,41,43 In the spirit of Statistical Physics, a suitable coarse-graining for a binary

matrix Mt is a block-spin transformation of the associated 2-dimensional square lattice. Namely, the k-th

coarse-graining step amounts to define a super-pixel s
ðk + 1Þ
i0 from the previous pixels s

ðkÞ
i via the major-

ity rule

s
ðk + 1Þ
i0 =

8<
:

1 if
P
j˛Bi

s
ðkÞ
i > bcardðBiÞ=2c

0 otherwise

(Equation 9)
iScience 26, 106181, March 17, 2023 15



ll
OPEN ACCESS

iScience
Article
where P: $R is the floor function and Bi is the i-th set of pixels such that fBig forms a non-overlapping covering

the original 2-dimensional lattice. In particular, we takeBi ˛Mð232Þ so that at each coarse-graining step

the number of pixels is reduced to a fourth of the original ones and therefore we can perform enough

coarse-graining steps. Notice that, in this case, the majority rule is not exact since the cardinality of Bi is

even. Thus, if
P
j˛Bi

s
ðkÞ
i = 2 we randomly assign the value of s

ðk + 1Þ
i0 to be either 0 or 1.

In the spirit of the Renormalization Group, we should follow physical observables and - in particular - prob-

ability distributions44 to look for scale-invariance along the coarse-graining. That is, if the system is

scale-invariant in a spatial sense we should see that, even if we are coarse-graining the system, some of

its properties will not change up to some finite-size cutoff, because the small-scale features are indistin-

guishable from the large-scale ones. This is exactly what we look for when we compare the cumulative

probability distributions of the cluster sizes at different coarse-graining steps.

As at each coarse-graining step we observe a smaller and smaller system, we can exploit finite-size scaling.

Thinking of a percolation-like transition,26 the probability distribution of the fire sizes in a system of linear

size L scales as

PcumulativeðsFÞ = s� t +1
F j

�
sF
LD

�
(Equation 10)

where D is related to the critical exponent of the correlation length and t is the exponent of the power-law

distributed fire sizes. In particular,D is the fractal dimension of the fires. Hence, for a properly chosen value

of D, we expect that PcumulativeðsFÞst� 1
F as a function of sF=L

D will collapse onto the same curve. We find this

collapse with Dz1:95, which suggests once more, and in terms of the Renormalization Group, that the

2019–2020 fire seasons appear to behave like a system close to a phase transition (see Figure S3). In

fact, the fractal dimension tells us the size sF of a fire outbreak changes with its linear size, i.e., sF � LD .

Notice that in bond percolation we would expect the fractal dimension to be D = 91=48z1:896 in a two-

dimensional lattice, which is compatible with what we find in the data. However, the exponent t of the

fire size distribution is different from the one expected in bond percolation, suggesting that the universality

class might be different. Let us note that, in our model, bond percolation only happens in the isolated vege-

tation layer, and not in the layer where fire propagates.
Contact process and critical points

The contact process34,35,54,55 is an archetypal model for absorbing phase transitions, which describes

spreading phenomena over a set of sites fsigi = 1;.;N. Each site can be either occupied si = 1 or empty

si = 0. Empty sites are occupied by neighboring occupied sites at a rate l, whereas occupied sites become

empty at a rate m. The mean-field equations for the density of occupied sites r is given by _r = rðl � mÞ �
lr2.

This equation has two stationary solutions. The first one is the empty configuration rvst = 0, which is only

stable if l<m. The empty configuration is an absorbing configuration, that is, once it is reached the system

cannot leave it since no reactions are possible. If l>m, the stable stationary solution is rast = 1 � m= l. The

value labshm is the critical point of the model at which the absorbing phase transition takes place - below

labs, the systemwill always reach the absorbing empty configuration, whereas above labs non-zero values of

r are possible. Conversely, r is the order parameter of the system, which identifies the two phases. This kind

of critical point is present in our model of vegetation-fire spreading as well, as we can show analytically in

the mean-field case.

The contact process on the 2D lattice, however, displays another kind of phase transition related to its

spatial structure,57 a percolation transition. The order parameter of this transition is the probability that

a site belongs to a spanning cluster, i.e., an infinite cluster, which is zero below the percolation transition

and greater than zero above. Notice that Martı́n and collaborators57 use a slightly different definition of the

contact process, in which empty sites are occupied by neighbors with a probability p and occupied sites

become empty with a probability 1 � p. They show numerically that the percolation transition in a 2D lat-

tice happens at ppercz0:725. We can immediately recover our formulation by noting that p = l= ðl +mÞ,
giving the result used in the main text ðl=mÞpercz2:63.
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Mean-field behavior of the model

The mean-field equations read

dpB

dt
= � lVpVpB +dFpF +dVpV

dpF

dt
= �dFpF +

�
lFpF +bF

	
pV

dpV

dt
= � �

dV +bF + lFpF

	
pV + lVpVpB

(Equation 11)

where pB, pF and pV are the probabilities of each state. Since pB = 1 � pF � pV we consider only the

equations for pF and pV . In general, the stationary state of the system is given by



dFpF =

�
lFpF +bF

	
pV�

dV +bF + lFpF

	
pV = lVpV

�
1 � pV � pF

	 : (Equation 12)

These equations have an absorbing solution, since ðpabs
V ;pabs

F Þ = ð0; 0Þ is a trivial solution of the system.

Importantly, it is easy to show that by adding a birth term for the vegetation this empty solution disappears,

as expected. The Jacobian matrix evaluated at ðpabs
V ;pabs

F Þ is given by

Jabs =

��dF bF

0 �ðbF +dV Þ+ lV

�
(Equation 13)

whose eigenvalues are mabs
1 = � dF and mabs

2 = lV � bF � dV . Thus, the empty state is only stable below

labsV = bF +dV , which is the absorbing critical point of the system. Notice that lF does not play ameaningful

role in the stability of the empty state, a feature that is likely wrong in a spatially embedded model.

The other stationary state of the system is given by

pstat
F =

�dVlF � ðbF +dF + lFÞlV +
ffiffiffiffiffiffiffiffi
f statF;V

q
2lFlV

(Equation 14)
pstat
V =

lFð�2bF � dV Þ � ðbF +dF � lFÞlV +
ffiffiffiffiffiffiffiffi
f statF;V

q
2lFðlF + lV Þ (Equation 15)

where f statF;V = 4dFlVlFðlabsV � lV Þ+ ðdVlF � ðbF +dF + lFÞlV Þ2 is positive above labsV . The eigenvalues of Jst al-

ways have a negative real part if lV >bF +dV while they always may have a non-vanishing imaginary part.

Hence, the relaxation towards the steady state typically happens in an oscillatory fashion. In particular, these

oscillations play a major role in the evolution of the finite-size stochastic model, where the noise can push the

system to the absorbing state or produce sustained stochastic oscillations, as we see in Figure 4I.
Exact stochastic simulation

Simulationsof the three-statemodel onagivennetwork, suchasa2-dimensional lattice, areperformedusing the

Gillespie algorithm.56 If weassume that there areN sites in thenetwork andM possible transitions - in ourmodel,

M = 6 - then, at each time the network can be associated with a propensity matrix A
ðtÞ
mi , where m = 1;.;N and

i = 1;.;M. Each rowofA
ðtÞ
mi is givenby the transition rates that them-th site can undergo, given its state at time t.

We introduce the total propensity a
ðtÞ
0 =

P
m

P
i

A
ðtÞ
mi , so that the waiting time for the next transition is given by

tðtÞ = �
�
a
ðtÞ
0

�� 1

log u (Equation 16)

where u is uniformly distributed in [0,1]. Then, the transition i that occurs and the site m at which it occurs are

such that

Xm� 1

m = 1

Xi� 1

i = 1

AðtÞ
mi %a

ðtÞ
0 v <

Xm
m = 1

Xi

i = 1

AðtÞ
mi (Equation 17)

where v is once again uniformly distributed in [0,1]. We then update Ami with the new transition rates for m

and set the time to t + t.
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Simulations and time-scale separation

As pointed out in the main text, it is reasonable to expect that the vegetation dynamics is much slower than

the fire dynamics. However, the parameter space of the model is extremely large and thus a phase space

plot for the full model proves to be unfeasible. Therefore, in order to simplify the problem and reduce the

number of free parameters, we assume that the vegetation configuration does not change during the prop-

agation of a fire. This approximation is compatible with the time evolution of the model if we also assume

that fires are rare events and the complete model predicts a charge-discharge dynamics. In fact, realisti-

cally, we expect the vegetation - if dry enough - to act as fuel during a fire propagation, which thus has

to stop when locally all fuel is exhausted. Then the vegetation regrows and only after enough fuel is accu-

mulated a new fire can start - that is, the two processes happen at different timescales.

This assumption is implemented in simulations as follows. Let us start with a network ðfsigNi = 1; fEijgÞÞwhere
the N sites si are such that si ˛ fB;Vg and fEijg are the edges between the sites. We look for a stationary

configuration fsstati gNi = 1 of the reactions

ðsi = VÞ + �
sj = B

	
/
lV ;Eijðsi = VÞ+ �

sj = V
	

(Equation 18)
ðsi = VÞ/dV ðsi = B Þ (Equation 19)

where the notation /
lV ;Eij

means that the reaction happens at a rate lV if and only if i and j are joined by an

edge Eij. The system has an absorbing configuration fsi = Bg and its stationary configurations only

depend on the ratio of the reaction rates zV = lV=dV . See Supplementary Figures for examples of such

configurations in a 2-dimensional lattice.

Our approximation consists in obtaining a network over which the fires can spread from the stationary

configuration fsstati gNi = 1. In particular, we consider the subgraph induced by the map g : i1m defined for

all the indexes i such that si = V . If we call these sites sm = sgðiÞ, we end up with the vegetation subgraph

ðfsmgNV

m = 1; fEmngÞÞ where Emn = EgðiÞgðjÞ and NV is the number of original vegetation sites. This subgraph is

typically composed of many disjointed components. These components contain roughly the same number

of nodes for zabsV < zV � z
perc
V , since the stationary configuration is dominated by a large number of small

vegetation clusters, whereas as we approach z
perc
V a giant component emerges and it is eventually domi-

nant for zV [ z
perc
V .

We now assume that sm ˛ fB;V ;Fg, and notice that the initial configuration is such that sm = V ,cm = 1;.;

NV . In order to sample the distribution of the fire sizes we can choose a site sm and set sm = F. Then, to

simulate a fire, we consider the reactions

�
sm = F

	
+ ðsn = VÞ /lF ;Emn�sm = F

	
+ ðsn = FÞ (Equation 20)
�
sm = F

	
/
dF �

sm = B
	

(Equation 21)

until there are no more F sites in the network. Thus, the fire dynamics only depend on zF = dF= lF . The fire

size - i.e., the burned area - is simply the number of empty sites NB of the final configuration.

One should be careful that if sm is chosen at random between all sites we typically favor larger components

of the vegetation subgraph. Thus, we first uniformly sample a given component Cs of the vegetation sub-

graph, and then we randomly choose a site within the selected component and set CsHsm = F. This

assumption is qualitatively equivalent to the assumption that if two fires start in the same cluster they

will contribute to the same burned area. To be precise, this is only true if zF is small enough, so that two

fires inside the same component will coalesce with high probability. However, for larger values of zF we

expect fires to be small independently of the size of the underlying component, hence our assumption

does not affect the results. In this way, we are now able to computationally explore the model’s behavior

effectively and systematically. In particular, for each value of zV , we simulate a large number of stationary

configurations fsstati gNi = 1. Then, for each of these configurations, at a given value zF we simulate a number of

fires much larger than the number of components Cs, thus ending up with a set of burned areas fNBg that
gives us the fire size distribution at ðzF ;zV Þ.
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