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Fire is one of the most important disturbances of the earth-system, shaping the bio-
diversity of ecosystems and particularly forests. Climatic change and other anthropo-
genic drivers such as deforestation and land use change could produce abrupt changes 
in fire regimes, potentially triggering transition from forests to savannah or grasslands 
ecosystems with large accompanying biodiversity losses. The interplay between climate 
change and deforestation might intensify fire ignition and spread, potentially giving 
rise to more extensive, intense, and frequent fires, but this is highly uncertain. We use 
a simple forest-fire model to analyze the possible changes in the Amazon region’s fire 
regime that depend on climate change-related variables. We first explored the model 
behavior and found that there are two possible regime changes: a critical regime that 
implies high variability in fire extent and mega-fires, and an absorbing phase transi-
tion which would produce the extinction of the forest and transition to a different 
vegetation state. We parameterize the model using remote sensing data on fire extent 
and temperature, and show that it demonstrates proficiency in predicting past fires. 
Upon considering 21st-century climate projections and deforestation scenarios, our 
findings suggest that the Amazon region is not currently nearing any of these regime 
changes but predict a consistent increase in fire extent mainly induced by deforesta-
tion. Therefore, stopping deforestation could be an important factor in reducing the 
potential for drastic alterations in tropical forests of the Amazon region.

Keywords: Amazon forest, climate change, deforestation, forest-fire model, 
predictions

Introduction

Few regions of the terrestrial biosphere are unaffected by fire. Fires caused directly 
or indirectly by human activities (Bowman  et  al. 2020) have different characteris-
tics from natural fires, including in spatial pattern, severity, burn frequency and 
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seasonality, producing contrasting ecological consequences 
(Steel  et  al. 2021). Recent years have seen an increase in 
fire intensity and extent in different regions (Bowman et al. 
2020, Pivello et al. 2021), partially attributable to the fact we 
are experiencing a biosphere temperature that is 1°C above 
historical records (IPCC 2021); it is hypothesized that this 
intensification could reduce the spatial and temporal varia-
tion in fire regimes, called pyrodiversity (Kelly and Brotons 
2017), which in turn will generate substantial reductions in 
biodiversity and ecosystem processes such as carbon storage 
(Dieleman et al. 2020, Furlaud et al. 2021). The regions most 
affected are likely the ones in which fire has historically been 
rare or absent. In regions such as tropical forests (Barlow et al. 
2020), extreme fires could trigger extensive biodiversity 
loss as well as major ecosystems changes such as transitions 
from forest to savannah or shrublands (Hirota  et  al. 2011, 
Fairman et al. 2016).

Fires in the Amazon region were historically rare, due to 
the ability of old-growth forest to maintain enough moisture 
to prevent fire spread, even after prolonged drought periods 
(Uhl and Kauffman 1990). Human activities, specifically 
deforestation and resulting land-use changes over the past 
four decades, have created conditions conducive to more 
frequent and widespread fires across the basin (Alencar et al. 
2011, Aragão et al. 2018, Cardil et al. 2020). Another sig-
nificant factor contributing to this phenomenon is the pre-
dicted increase in droughts due to climatic change. Droughts 
can interact with deforestation, potentially exacerbating land 
cover conversion and creating a dangerous positive feedback 
loop (Barlow  et  al. 2020). Furthermore, human activities 
such as secondary vegetation slash-and-burn and cyclical fire-
based pasture cleaning can serve as ignition sources for forest 
fires (Aragão et al. 2018). Despite substantial reductions in 
deforestation rates until 2018 (Feng  et  al. 2021), previous 
deforestation activities may still provide sufficient ignition 
sources for fires to expand into adjacent forests (Aragão et al. 
2018). This process could raise the importance of fires unre-
lated to deforestation (Aragão et al. 2014).

Different models of fire for the Amazon have been devel-
oped to predict regime changes under climate change scenar-
ios. Here, we define a regime change as an abrupt transition 
in fire patterns across large areas, such as a shift from infre-
quent scattered fires to more frequent and extensive burning 
(Kelly  et  al. 2020). These models can be process-based (Le 
Page et al. 2017) or statistical (Fonseca et al. 2019), and gen-
erally consider land-use change and other human activities, 
as well as local weather conditions, but they usually neglect 
the spatial dynamics of fire spread. Statistical fire models 
take into account mainly environmental factors (Turco et al. 
2018), while process-oriented models include more mecha-
nistic details (Thonicke et al. 2010), and a few treat spatial 
dynamical phenomena (Schertzer et al. 2015). Such spatial 
dynamics are important because they can provide insights 
into how local interactions give rise to emergent fire patterns 
(Pueyo et al. 2010), and potentially change the stability char-
acteristics of the entire dynamical system (Levin and Durret 
1996).

Simple models of fire have been used as an example of self-
organized criticality (SOC), where systems can self-organize 
into a state characterized by power-laws in different model 
outputs. For example, the forest fire model of Drossel and 
Schwabl (1992) (DSM) was proposed to show SOC in rela-
tion to the size distribution of disturbance events (Jensen 
1998). Power-laws imply scale invariance, meaning that there 
is no characteristic scale in the model. Later it was shown 
that DSM does not exhibit true scale invariance (Grassberger 
2002) and that the system needs to be somewhat tuned to 
observe criticality (Bonachela and Muñoz 2009). These facts 
decreased its theoretical attractiveness, but the model could 
still be of high practical relevance. Some modifications of 
the DSM model have been used to predict fire responses to 
climate change (Pueyo 2007), and other DSM variants can 
reproduce features observed in empirical studies (Ratz 1995) 
such as the power-law distributions of the fire sizes, the size 
and shape of unburned areas and the relationship between 
annual burned area and diversity of ecological stages (Zinck 
and Grimm 2009). An analysis of different models showed 
that the key for reproducing all these patterns was chang-
ing the scale of grid cells to represent several hectares, and 
the ‘memory effect’: flammability increases with the time 
since the last fire at a given site (Zinck and Grimm 2009, 
Zinck  et  al. 2011). However, the exponent of the fire size 
distribution observed in different ecoregions still cannot be 
reproduced by these models.

The simple models mentioned above could have criti-
cal behaviour characterized by a power-law distribution in 
fire sizes and other model outputs. Such dynamics can be 
explained in terms of percolation theory (Stauffer and 
Aharony 1994) where there is a transition between two states: 
one where propagation of fires occurs, and another where it is 
very limited. The narrow region where the transition occurs 
is the critical point, characterized by an order parameter (fire 
size) that depends on some external control parameter (e.g. 
ignition probability) (Solé and Bascompte 2006). An exam-
ple of this transition could be the case of the recent Australia 
2019–2020 mega-fires (Nolan  et  al. 2020, Nicoletti  et  al. 
2023), which had devastating consequences for biodiversity 
and ecosystem functioning (Kelly et al. 2020). Historically, 
indigenous fire stewardship in Australian landscapes main-
tained flammable forest in a disconnected state by produc-
ing frequent small scale fires (‘Biodiversity in flames’ 2020), 
thus preventing high-intensity fires and protecting biodiver-
sity. This regime was disrupted by fire suppression related 
to European colonization land-use change (Hoffman  et  al. 
2021) and climate (Adams et al. 2020), pushing the system 
toward a critical regime (Nicoletti et al. 2023) with less eco-
system resilience to extreme fires. These extreme events are 
very difficult to predict by Earth system models that do not 
fully incorporate the dynamic of fuel accumulation and vege-
tation dynamics or their effects on biodiversity and ecosystem 
services (Sanderson and Fisher 2020).

The objective of this work is to model and predict the 
changes in fire regimes in the Amazon region using a sim-
ple spatial stochastic fire model, based on variables like 
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precipitation and temperature that are included in climate 
change scenarios. Our hypothesis is that climate change could 
drive Amazonian fire regime near a critical region, leading to 
more extreme fires. We thus assume that the emergent dynam-
ics can be described by a process of slow accumulation of fuel 
and rapid discharge produced by the fires. More precisely, 
we initially reconstruct past fire patterns using the NASA 
Moderate-Resolution Imaging Spectroradiometer (MODIS) 
burnt area product. This step serves to verify our main assump-
tion and to derive an ignition probability. Subsequently, in 
the second step, we predict the ignition probability up to the 
year 2060 based on different greenhouse gas Representative 
Concentration Pathways. The third step involves simulations 
to explore the behavior of the fire model. In the fourth step, 
we fit the fire model to the observed MODIS fire patterns. 
Finally, utilizing the model forced with the ignition probabil-
ity, we predict and analyze potential changes in the modeled 
fire regimes for the Amazon, taking into account the influence 
of deforestation on model parameters.

We will employ a modified DSM forest fire model (Drossel 
and Schwabl 1992), incorporating elements of long-distance 
forest dispersal and seasonality. Notably, the methodology 
involving the prediction of ignition probability under diverse 
global change scenarios and subsequent application to force 
the fire model represents a novel approach, as far as we are 
aware.

Material and methods

Our study region is the Amazon biome (Supporting 
Information). This includes Brazil, which represents 60% of 
the area, as well as eight other countries (Bolivia, Colombia, 
Ecuador, Guyana, Peru, Suriname, Venezuela and French 
Guiana). We chose this region because a significant amount 
of fires extend to tropical moist forests outside Brazil 
(Cardil et al. 2020), and the whole area is thought to be a cru-
cial tipping element of the Earth-system (Staver et al. 2011, 
Lenton and Williams 2013).

Reconstruction of past fire patterns from  
MODIS data

We estimated the monthly burned areas from 2001 to the 
end of 2021 using the NASA Moderate-Resolution Imaging 
Spectroradiometer (MODIS) burnt area Collection 6 prod-
uct MCD64A1 (Giglio et al. 2016), which has a 460 m pixel 
resolution. We used Google Earth Engine with the JavaScript 
programming language to download the data restricted to 
the region of interest (source code availability below). Each 
image represents the burned pixels as 1 and the non-burned 
as 0. We then calculated the burned clusters using four near-
est neighbours (Von Neumann neighbourhood) and the 
Hoshen–Kopelman algorithm (Hoshen and Kopelman 
1976). Each cluster contains contiguous pixels burned within 
a month and this represents a fire event S, allowing us to 
calculate the number and sizes of fire clusters by month. We 

estimated the probability of ignition f as f t S
T

t� � � | ) , where 

|St| denotes the number of clusters |St| that start in the month 
t (if a fire started in the previous month we avoided it to 
remove possible double counting), and T is total number of 
pixels in the region, to allow comparisons with the fire model.

We also estimated the distribution of fire sizes using an 
annual period to have enough fire clusters to discriminate 
between different distributions. We aggregated the monthly 
images using a simple superposition; the annual image has a 
1 if it has one or more fires during the year, and 0 if it has 
none. This assumes that most of the sites burn only once a 
year, we verified this using the MODIS data that on average 
only 0.06% burn more than once annually. After that, we ran 
again the Hoshen–Kopelman algorithm to obtain the annual 
fire clusters. In this last case, it is probable that independent 
ignitions merge into a single fire cluster. Similar methodolo-
gies allowing the merging of independent fires have been uti-
lized in global fire studies (Andela et al. 2017). Then we fitted 
the following distributions to the fire sizes: power-law, power-
law with exponential cut-off, log-normal, and exponential. 
We used maximum likelihood to decide which distribution 
fit the data best using the Akaike information criterion (AIC) 
(Clauset et al. 2009). Additionally, we computed a likelihood 
ratio test, Vuong’s test (Vuong 1989), for non-nested models. 
We only considered it a true power-law when the value of 
the AIC was at a minimum and the comparison with the 
exponential distribution using the Vuong’s test was signifi-
cant with p < 0.05; if p > = 0.05 we assumed that the two 
distributions cannot be differentiated.

Fitting of ignition parameter

We estimated the ignition probability by month f as 
explained above and related it to monthly precipitation (ppt), 
maximum temperature (Tmax) and a seasonal term (m) rep-
resenting the influence of the month of the year in f. These 
variables have generally been included in global and regional 
fire activity models (Huang  et  al. 2015, Turco  et  al. 2018, 
Fonseca  et  al. 2019, Wei  et  al. 2020). More variables were 
used in these models, but we are constrained by the variables 
available in the Climate Projections. We obtained environ-
mental data from the TerraClimate dataset (Abatzoglou et al. 
2018), averaging over the study region, to represent the 
influence of regional climate over f. We evaluated an increas-
ingly complex series of generalized additive models (GAMs), 
assuming a Gaussian distribution and transformed f to loga-
rithms, because it had a highly skewed distribution. We also 
fitted the same models assuming a Gamma distribution and 
no transformation for f. For all the models we used thin plate 
regression splines (Pedersen et al. 2019) as smoothing terms, 
and for interactions between environmental variables we 
used tensor products, using restricted maximum likelihood 
(REML) to fit to the data (Pedersen et al. 2019). All these 
procedures were available in the R package ‘mgcv’ (Wood 
2017) and all source code is available at Github https​://gi​
thub.​com/l​sarav​ia/Am​azonF​ireTi​pping​Point​s/.
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We selected the best models using AIC (Wood 2017). To 
evaluate the predictive power of the models we use cross-val-
idation, we split the data set into a training set representing 
85% of the data and testing set (always three years long) and 
repeated the procedure 10 times starting at different random 
dates. We then calculated the mean absolute error (MAE) 
and the root mean squared error (RMSE) for the three best 
models selected with AIC (Supporting information). The for-
mulas of MAE and RMSE are as follows:

MAE | )� �
�
�1

1
n

f fi i

i

n
�

RMSE � �� �
�
�1 2

1
n

f fi i

i

n
�

Where fi is the observed ignition probability f at month i, fi
�  

the predicted f and n the total number of months used for 
predictions. We selected the model with the smallest mean 
absolute error (MAE) and root mean square error (RMSE) 
to generate predictions of the ignition probability up to 
2060. These predictions serve as input for the fire model, as 
explained in more detail below. Driving data were obtained 
from the NASA Earth Exchange Global Daily Downscaled 
Climate Projections NEX-GDPP (https​://ww​w.ncc​s.nas​a.gov​
/serv​ices/​data-​colle​ction​s/lan​d-bas​ed-pr​oduct​s/nex​-gddp​)
(Thrasher et al. 2012), which were estimated with general cir-
culation models (GCM) runs conducted under the Coupled 
Model Intercomparison Project Phase 5 (Taylor et al. 2012). 
We averaged over the 21 CMIP5 models and over the study 
region to obtain the monthly values of the needed vari-
ables: precipitation and maximum temperature. By using 
the ensemble average, we aimed to reduce individual model 
biases and capture collective uncertainties, thereby providing 
more robust and reliable predictions (Avila-Diaz et al. 2020a, 
b). Then we estimated the probability of ignition up to 2060 
using the fitted GAM across two of the four Representative 
concentration pathways (RCPs), RCP4.5 and RCP8.5 
(Meinshausen  et  al. 2011). Such RCPs are greenhouse gas 
concentration trajectories adopted by the IPCC and used for 
climate modelling and research (Moss et al. 2010). RCP4.5 
represents an intermediate scenario, indicating a peak in 
emissions around 2040 followed by a decline. On the other 
hand, RCP8.5 depicts a scenario where emissions persistently 
increase throughout the 21st century.

Fire model definition and exploration

Conceptually the model represents two key biological pro-
cesses: forest burning and forest recovery. We assume that the 
forest layer represents the flammable biomass or fuel layer of 
the forest (rather than absolute forest cover), as the focus is 
on modeling fire spread dynamics. When a site is burned in 
the model, it does not necessarily mean that all vegetation is 

killed – rather, it represents the consumption of flammable 
fuels. The regrowth or recovery process simulates vegetation 
re-establishing flammable biomass over time. The model 
lacks a spatially explicit representation of the deforestation 
process. This deliberate simplification was made to maintain 
model simplicity and ensure a more manageable fitting pro-
cedure for the current scope of the research.

The model uses a two-dimensional square lattice to repre-
sent the spatial region. Each site in the lattice can be in one 
of three different states: an empty or burned site, a flammable 
forest (called forest for short), or a burning forest. The lattice 
is updated in parallel, according to the following steps:

1)	 We pick at random a burning site, and it becomes an 
empty site in the following step (the model’s timestep is 
one day)

2)	 We pick at random a forest site and it becomes a burning 
forest if one or more of its four nearest neighbour sites are 
burning

3)	 We pick at random another forest site and it produces 
(with probability p) another forest site in empty site at 
a distance drawn from a power-law dispersal kernel with 
exponent de. This models the process of forest expansion 
beyond its immediate neighborhood.

4)	 A random site can catch fire spontaneously with probabil-
ity f, i.e. which varies monthly to reflect the fire season. 
This parameter is fitted to fire data for predictions, global 
change scenarios and deforestation scenarios (refer to the 
previous section for details).

We assumed absorbing boundary conditions and a lat-
tice size of 450 × 450 sites, but also ran simulations with 
other sizes, resulting in equivalent results. Rule 3 means that 
a burned or empty site can become forest more quickly when 
it is near a forest site, but also that some sites can become 
forest even when far from established forest sites – depend-
ing on the kernel exponent, it could be any site in the lat-
tice (Marco et al. 2011). The choice of a power-law dispersal 
is justified because forests dispersion generally exhibits fat-
tailed kernels (Clark et al. 2005, Seri et al. 2012).

This model is very similar to the DSM forest fire model 
(Drossel and Schwabl 1992): it exhibits critical behaviour 
when θ = p/f tends to ∞, and thus must satisfy the condition 
that f < p. This condition means that the chances of an empty 
site turning into forest are much higher than the chances of a 
healthy forest site catching fire spontaneously, as is generally 
observed in natural systems. The model involves the separa-
tion between three time scales: the fast burning of forest clus-
ters, the slow recovery of forest, and the even slower rate of fire 
ignition. Then in the critical regime there is a slow accumula-
tion of forest that forms connected clusters, and eventually as 
the ignition probability is very low these clusters connect the 
whole lattice – here is the link with percolation theory (Stauffer 
and Aharony 1994) – and a single ignition event can produce 
large fires. After this, the density of the forest becomes very 
low and the accumulation cycle begins again. This regime is 
characterized by wide fluctuations in the size of fires and the 
density of trees, with both following approximately power-law 
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size distributions. If the ignition probability f is too high fires 
are frequent, forest sites become disconnected and small fires, 
of characteristic size, dominate the system.

One of the features not present in the original forest fire 
model is that forests can have long-distance dispersal; eco-
logically, this determines population spread, the colonization 
of empty habitats, and the assembly of local communities 
(Nathan et al. 2008). The inclusion of long distance dispersal 
can modify the distribution of forest clusters, the distribu-
tion of fire sizes, and the dynamics of the model (Marco et al. 
2011). When forest dispersal is limited mainly to nearest 
neighbours, forest recovery produces clusters that tend to 
coalesce and form uniform clusters with few or no isolated 
forest sites. When the forest burns, these isolated forest sites 
are the points from where the forest recovers (assuming no 
external colonization); when these are not present there is an 
increased probability that the forest becomes extinct. With 
long-distance dispersal, there is an important number of 
isolated forest sites, thus decreasing the probability of for-
est extinction (Supporting information). These processes are 
particularly important when θ is low and fires are smaller 
but more frequent. In dynamical terms there is a critical 
extinction value θext, when θ < θext the forest become extinct. 
However, the critical value depends on the dispersal distance 
governed by de. At higher de, the dispersal distance is smaller, 
the forest patches are more compact and isolated, leading to a 
higher probability of complete burning and a lower θext.

The second feature not present in the original forest fire 
model is seasonality. In natural systems, certain times of the year 
exhibit environmental conditions that significantly increase the 
probability of fire ignition, while during the remaining periods, 
the probability of fires is much lower. This results in a periodic 
cycle of forest accumulation and a brief duration of intense 
fires, commonly known as the fire season. Consequently, the 
model incorporates a short period characterized by a low θmin 
and a longer period with a high θmax. When both the minimum 
and maximum θ values are big enough to fall within the criti-
cal region, the model’s long-term behavior resembles the criti-
cal regime, with maximum fire sizes occurring during the fire 
season. If θmax is within the critical region and θmin is outside it, 
the model’s dynamics may exhibit more extreme fires (similar 
to the critical regime) compared to an equivalent non-seasonal 
model. Conversely, when both θ values are outside the critical 
region, the dynamics may approach the extinction zone if one 
or both of them are below θext. In this scenario, seasonal differ-
ences in fire sizes are less pronounced.

Increasing the length of the fire season as predicted in climate 
change scenarios (Pausas and Keeley 2021) will produce the 
model to spend more time at a lower θ decreasing the connectiv-
ity of the forest and the size of fires. Moreover, this could increase 
the possibility of critical extinction if both θmax and θmin are below 
θext. In this work we assume that the forest is flammable forest; 
the extinction of this state could mean that environmental con-
ditions become wetter and the forest does not burn anymore. If 
environmental conditions become drier, the extinction of forest 
probably means a transition to another type of vegetation and 
then the conditions to apply this model will no longer hold.

We conducted a set of exploratory simulations, with a 
range of parameters compatible with what we found for the 
Amazon region, to characterize the regimes described above 
(Supporting information). Using a lattice size of 450 × 450 
sites, we ran the simulations for 60 years with an initial for-
est density of 0.3 (we found that different initial conditions 
gave similar results) and used the final 40 years to estimate 
the total annual fire size, the maximum cluster fire size, the 
distribution of fire sizes and the total number of fires. To 
determine the cluster fire sizes and distributions we used the 
same methods described previously for the MODIS fire data. 
We ran a factorial combination of dispersal exponent de and 
θ and 10 repetitions of each parameter set. First, we ran the 
experiment with θ fixed, keeping the ignition probability f 
constant, and then repeated the experiment with seasonal-
ity: we simulated a fire season of 3 months each year mul-
tiplying f by 10. A dispersal exponent de > 1 (e.g. de = 102) 
is equivalent to a dispersal to the nearest neighbours, while 
de = 2.0155 corresponds to a mean dispersal distance of 66 
sites (Supporting information), i.e. long range dispersal.

Fire model fitting

As we already estimated the f parameter from the 21 years of 
MODIS data, we only needed to estimate the dispersal expo-
nent de and the probability p of forest growth. This param-
eter p is expressed as r = 1/p, representing the average number 
of days for forest to recover. For this estimation we duplicated 
the extension of the estimated f as if it started in 1980; we 
allowed 20 years for transient effects to dissipate in the model, 
and then used the last 20 years to compare with monthly fire 
data. This choice was justified because most human activities 
in the Amazon started in this decade during the conversion of 
large areas of forest to agriculture (Brando et al. 2019).

To explore the parameter space we used Latin-hypercube 
sampling (Fang  et  al. 2005) with parameter ranges 2.5–
2.00035 for de (equivalent to a mean dispersal distance range 
of 3–290 sites) and 365–7300 days for r. As the model has a 
long transient period, we could suppose that the system is in 
a transient state, and thus we also estimated the initial forest 
density as a parameter with a range of densities of 0.2–0.7. We 
used 600 samples and 10 repeated simulations of the model 
for each sample, totalling 6000 simulations, and selected the 
best parameter set using approximate Bayesian computation 
(ABC) (Csilléry et al. 2010, 2012) by comparing the relative 
monthly fire size – i.e. the absolute size divided by the total 
number of sites (the number of MODIS pixels for the Amazon 
biome or the number of lattice sites for simulations) – with 
model predictions using Euclidean distance. During an initial 
test, we observed that the peaks in the model were delayed by 
2–3 months; the same happens in more realistic process-based 
models (Thonicke et al. 2010), and as we were not interested 
in predicting the exact seasonal fire patterns, so instead of using 
the complete monthly time series we used the monthly max-
imum fire size of the year. We validated this choice using a 
random model simulation with known parameters as data and 
verifying that we could recover the parameters (source code). 
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The second step of our fitting procedure was to use power-
law fire distribution to perform another ABC; we thus ran 
10 simulations for each of the parameter sets in the posterior 
distribution and then calculated the fire cluster distributions 
using the same methods explained previously. We used ABC 
to select a second posterior parameter distribution compared 
to the median value of the power-law exponent from MODIS 
data. The tolerance (proportion of results accepted nearest the 
target values) for both ABC procedures was set at 0.05.

Finally, we used a sample of 100 elements from the final 
posterior parameter distribution and ran the model with both 
the ignition probability estimated from MODIS data and the 
ignition probability estimated with the GAM model for the 
period 2000–2021, to verify if the data fit within the predic-
tion range. We performed the ABC using a lattice size of 450 
× 450 sites, and as we used relative values (i.e. absolute fire 
size divided by the total number of sites) the model does not 
represent a defined scale.

Model predictions

We used a sample of 100 elements from posterior parameter 
distributions and predictions for the parameter f under RCP 4.5 
and RCP 8.5 to perform simulations up to 2060. We started 
simulations in the year 1980 as in the fitting procedure, but 
instead of using f derived directly from data, we used f obtained 
from the GAM model, allowing us to compare actual and pre-
dicted fires using the same method to obtain f. Additionally, we 
ran a set of simulations with ignition probability f derived from 
the GAM model applied to retrospective GCM runs coupled 

with RCP 4.5 and compared them with simulations using igni-
tion probability from TerraClimate before 2022. This allowed 
us to assess the differences in model behavior when forced with 
GCM models versus TerraClimate data.

Our model also does not explicitly account for deforesta-
tion’s impact; however, we approximate this by dynamically 
adjusting parameters as deforestation intensifies. Initially fit-
ted to the entire region based on a singular flammable forest 
type assumption, these parameters reflect an average between 
two vegetation categories: 1) post-deforestation vegetation, 
featuring higher ignition probability (f) and faster recovery 
(associated with higher growth probability, p); and 2) the 
original forest, with lower f and p values. Consequently, esca-
lating deforestation leads to an estimated increase in the aver-
age p and f values beyond the fitted period (see the Supporting 
information for more details). Leveraging the Hansen remote 
sensing product (Hansen  et  al. 2013) updated until 2021, 
we calculated the mean deforestation rate for the Amazon 
biome. Subsequently, under RCP4.5 and RCP8.5 scenarios, 
we demonstrate the potential impact of deforestation on the 
model’s predictions. The estimated increase in f post-2021 is 
shown in the Supporting information.

Results

Fire patterns from MODIS data

The monthly fires follow a strong seasonal pattern with a 
maximum between September and October (Supporting 

Figure 1. Annual total fire size versus maximum fire size relative to Amazon biome, estimated with MODIS burned area product. These 
observed data exhibit cycles of loading and discharge, years with high fire extent and big fire events – the upper right region of the figure 
– which are followed by years of low fire extent and no extreme events in the lower left region. A typical trajectory could be the years 2009, 
2010 and 2011 where this cycle can be clearly observed.
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information). We characterize the annual fire regime using the 
total fire size (total burned area) and the maximum fire cluster 
(the biggest fire event Smax). We note that the years with highest 
Smax are also years with a large total area size (Fig. 1). The years 
2007 and 2010 had the two highest Smax and they also have a 
power-law distribution (Supporting information). Power-law 
distributions are defined as cS−α where c is constant, α the expo-
nent and have an extra parameter: S = xmin, which is the mini-
mum value for which the power-law holds. The constant c is 
given by the normalization requirement (Newman 2005). In the 
dataset, only 6 out of 20 years demonstrate fire sizes that con-
form to a power-law distribution (Supporting information). It is 
noteworthy that some of these distributions display a range [Smax 
− xmin] with notably higher values compared to years without 
power-law behavior. However, variability exists, as certain years 
with power-law patterns exhibit a relatively small range. This 
dual extremity mirrors a discernible pattern observed in the fire 
model under investigation.

Fitting of ignition parameter

We fitted GAM models for the ignition probability f with 
single variables, combinations of two interacting variables, 
and lags of one month, the best model with lower AIC 

and lower MAE and RMSE was the Gaussian with the 
interaction Tmax × m (Supporting information). The GAM 
fitted to the complete dataset predicts the seasonality of f 
very well but it does not capture the most extreme years of 
f (Supporting information) between years 2002 and 2011. 
This suggests that incorporating additional environmen-
tal variables or accounting for spatial heterogeneity in f 
may be necessary to improve the GAM’s predictive power. 
Including spatial heterogeneity would require modifica-
tions to the model, as accounted in the discussion section. 
The Supporting information includes an example of the 
cross-validation procedure, where the model was fitted to 
the data from the early years (pre-2018) and used to pre-
dict the remaining data.

With the best-fitted GAM and the Tmax from the 
NASA Earth Exchange Global Daily Downscaled Climate 
Projections, we predicted the monthly f starting from 2021 
for two greenhouse gas emissions scenarios: RCP4.5 and 
RCP8.5. For the fire model simulations we added the GAM’s 
predictions using the actual data previous to 2021, we can 
observe that the temporal pattern of f before 2021 are sea-
sonal but more irregular and variable than the patterns after 
2021 (Supporting information).

Figure 2. Total annual fire size versus max fire cluster for the fire model. (A–B) Are simulations with fixed θ, where θ = p/f, p the forest 
recover probability and f the ignition probability. (A) Simulations with dispersal exponent de = 102, mean dispersal distance of 1 (equivalent 
to nearest neighbours ) and (B) with de = 2.0155, mean dispersal distance of 66 sites. (C–D) Simulations with a fire season of 90 days where 
θ is divided by 10 (the probability of ignition f is multiplied by 10), and the same de as previously.
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Fire model exploration

We ran the model for a range of the θ = p/f parameter, antici-
pating that larger values would produce critical behaviour, 
consisting of large variability of fires between years and 
extremely large cluster fire sizes that follow a power-law dis-
tribution. As expected, we obtained a larger proportion of 
power-law distributions for the biggest size of θ (Supporting 
information), and particularly high variability and extremely 
large fires (Fig. 2). For simulations with seasonality, we 
observed the expected decrease in the number of years where 
the size of the fire clusters follows a power-law distribution, 
also less variability and fewer extreme fires, because in these 
cases θ decreases for the fire season. Seasonality also had the 
unexpected effect of increasing the frequency of power-law 
distribution for θ = 25 with a bigger exponent than the ones 
for large θ (Supporting information); this pattern was also 
observed in the MODIS data.

In the simulations with θ = 25 and 250 and with shorter 
dispersal distances, the forest density tends to decrease and 
eventually reaches zero, marking the absorbing phase transi-
tion reported for this type of model (Nicoletti et al. 2023); this 
means that in these cases the parameter θ was below the criti-
cal point θext and so produces forest extinction (Supporting 
information). Increasing the dispersal distance produces 

higher forest density, while seasonality has the opposite effect. 
In the case of high dispersal and low θ and seasonality, we are 
again below θext (Supporting information). Note once again 
that forest density is the so-called active component of the 
model and represents the flammable forest.

Fire model fitting

After the first ABC we obtained the first posterior distribution 
of parameters (Supporting information). The model gener-
ated simulations that closely resemble the monthly MODIS 
fire estimates, despite being fit only using annual maxima 
(Supporting information). Repeated simulations with the 
same set of parameters revealed significant variation due to 
the stochastic nature of the model dynamics (Supporting 
information). A noticeable lag in the model’s monthly max-
ima compared to MODIS data (Supporting information) 
may be due to the lack of a fire spread velocity parameter 
in the model. Despite this, when evaluating the total annual 
fire size, the model produced intervals that encompassed the 
MODIS estimates (Supporting information). Thus, the lag in 
the monthly maxima does not significantly impact our goal 
of predicting the total annual fire.

For the second ABC we used the posterior obtained in 
the first step, and calculated the power-law exponent of the 

Figure 3. Predictions of the fire model compared with observed data for the years 2001–2021. We used best-fit parameters, the ignition 
probability from MODIS, and the ignition probability from the estimated GAM models (Simul GAM), and run 100 simulations of the 
model. To make them comparable we divided all the outputs (except power-law exponent) by the total number of pixels in the region/
model; black points are the medians.
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model simulations; this new set of parameters had a similar 
range as the first, with simulated power-law exponents near 
the observed value (Supporting information). The average θ 
of the final posterior distribution has a mean of 61 a range 
between 9 and 910, which is a low-intermediate range, con-
sidering the parameter range we used for the model explora-
tion. The active state of the model, representing the amount 
of forest, consistently displayed a median value of 0.2 across 
all scenarios (Supporting information).

When examining predictions without temporal struc-
ture (Fig. 3), both models, one simulated with the ignition 
probability (f) calculated from the data and the other with 
f estimated using the GAM model, produced results consis-
tent with the observed data range. Comparing medians, the 
predicted total fire size closely matched the data (Fig. 3A), 
while the predicted number of fires was slightly higher 
(Fig. 3C). The maximum fire size (Smax) was moderately ele-
vated (Fig. 3B), and the power-law exponent (α) of the fire 
size distribution was lower (Fig. 3D). It is worth noting that 
these results are interconnected, as a lower α signifies larger 
fire events. The model exhibited an extended range with a few 

very large fires, an outcome expected due to the nonlinear 
nature of the model and the number of simulations (around 
100 for each observed data).

Fire model predictions

The modelled temporal series, based on the f from the GAM 
model for the 2001–2021 period, exhibits a 95th percen-
tile interval that encompasses almost all the fire data (with 
the exception of the 2010 extreme fire). The median of the 
series suggests a decreasing trend in annual fires over this time 
period (Fig. 4). This decrease, along with inter-annual fluc-
tuations, is also apparent in the observational fire data shown 
in Fig. 1. Specifically, the most extensive fires occurred in the 
first decade from 2001–2010, while the subsequent period 
from 2011–2021 experienced substantially less extensive 
burning. After 2021, the model utilizes GCM predictions to 
estimate the fire ignition f, and a mean rate of deforestation 
from data.

Under both RCP scenarios in the absence of deforesta-
tion, a consistent pattern emerges with a gradual increase 

Figure 4. Time series of predictions of the fire model without (left) and with (right) deforestation, compared with observed data for the years 
2001–2060. We used best-fit parameter distributions, the ignition probability f derived from GAM models estimated using actual data up 
to 2021, and projections based on general circulation models (GCMs) following two greenhouse gas emissions scenarios, namely 
Representative concentration pathways (RCPs) 4.5 and 8.5 for subsequent years. Simulations based on f estimated with retrospective GCM 
simulations before 2006 are available in the Supporting information. A vertical dashed line separates the regions before and after 2021. The 
data points represent actual observations, while the solid line denotes the median of simulations with accompanying 95% confidence inter-
val bands. All outputs are presented relative to the total area.
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Page 10 of 15

in the total annual fires. However, the annual peak values 
observed in this scenario remain below those recorded dur-
ing the 2001–2021 period. In contrast, when considering 
deforestation, a notable surge is evident in both the median 
and extreme annual fire occurrences (Fig. 4). While both 
RCP scenarios exhibit comparable trends, there is an expan-
sion in the range of annual fires within the RCP8.5 scenario. 
This expansion is primarily driven by lower minimum fire 
occurrences.

The simulations based on f estimated from GAM models 
using GCMs under representative concentration pathways 
(RCP) 4.5, along with retrospective simulations before 2006 
(Supporting information), showed a similar mean trend but 
with less variability compared to simulations forced with f 
estimated from TerraClimate data (Supporting information).

The trends depicted in the total annual versus maxi-
mum fire plot by decade (Fig. 5) align with the observations 
described above. The plot encompasses all model simulations, 

highlighting the model’s proficiency in simulating extreme 
fires. However, an anticipated trend solely attributable to cli-
mate change scenarios would indicate a decline in extreme 
fires and total annual fire occurrences. Incorporating defor-
estation into the analysis revealed a significant escalation in 
both the maximum fire size and the overall total fire size. 
Fig. 5 illustrates the trend observed for RCP 4.5, which is 
also similar to that depicted in the Supporting information 
for RCP 8.5. Both RCP scenarios exhibit a similar pattern.

Discussion

Based on spatial forest-fire dynamics, the model fitted to 
actual data successfully reproduces past fire patterns and 
provides insights into the future dynamics of Amazon fires. 
The predictions up to year 2060 suggest that the Amazon 
fire dynamics are driven to an increase in total annual and 

Figure 5. Total annual size of fires versus maximum monthly fire size % relative to the area of the region, data, predictions and predictions 
including deforestation. The data column was estimated using the MODIS burned area product. The predictions by decade were estimated 
with a fitted model using a monthly ignition probability calculated with data from GCMs under two greenhouse gas emissions scenarios 
known as representative concentration pathways (RCPs), here only RCP4.5 and RCP8.5 is shown in the Supporting information. For the 
years 2001–2021 the ignition probability was estimated from actual data.
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Page 11 of 15

extreme fires mainly caused by deforestation. Surprisingly, 
this increase did not occur under a scenario of climatic forc-
ing alone. In fact, in the latter case, the model actually pre-
dicts a reduction of extreme annual fires and a slight increase 
in annual fire size.

This last result might be due to a double average that we 
used for the general circulation models (GCM): we averaged 
the temperature over the spatial extent of the region and over 
all the 21 GCMs. When we used the actual data – also aver-
aged over the region – the model predicts in the range of 
observed extreme fires. For this reason, we hypothesize that 
increased temporal variability of the ignition probability 
could produce an increase in the extreme fires not captured 
by the model due to the smoothed nature of the CGM data. 
We furthermore hypothesize that our results might in general 
underestimate the impact of climate change on total fire size, 
because our model only assumes increased fire ignition in 
drier conditions but ignores increased fire propagation under 
the same conditions.

By contrast, the increase in the median tendency of annual 
fires under deforestation scenarios appears to be a robust pre-
diction, consistent with the projected rise in fire weather 
conditions for the region (Abatzoglou et al. 2019). It is fur-
thermore also in line with the observation that declining total 
fire sizes in years 2001–2021 coincide with decreasing lev-
els of deforestation. The deforestation levels in the Brazilian 
Amazon were 44% lower in 2020 compared to the levels 
recorded from 1996 to 2005 (Silva Junior et al. 2020). One 
interesting application of this model is its ability to provide 
insights into trends that extend beyond the fluctuations of 
actual data.

A critical regime would imply far more extreme fires and an 
absorbing phase transition that could signal an imminent for-
est–savanna transition, without extreme fires but with more 
frequent fires. The actual and predicted fire regime seems 
to lie between these regimes. This model does not explicitly 
include deforestation or slash-and-burn and other agricul-
tural areas – these are implicitly represented in the flammable 
forest state – and thus the continuous increase of these land 
uses represented in the deforestation scenarios, combined 
with the increase in the probability of ignition f and produce 
important changes in the Amazonian fire regime.

Similar models have been used to fit fire data and deter-
mine if a given system is in a critical regime. For example, 
Zinck et al. (2011) found that some regions of Canada have 
experienced a change in the fire regime from a non-critical 
to critical. They argued that the original Drossel–Schwabl 
model (DSM) did not give the correct values of the power-
law exponent of fire distributions, and thus modified the 
model to represent fire propagation as a stochastic birth–
death process. This means modelling fire as a contact pro-
cess (Oborny et al. 2007) that develops over the forest sites; 
the same concept was further explored concerning the recent 
Australian mega-fires (Nicoletti  et  al. 2023). Here we took 
a different approach: as in the DSM our model is based on 
deterministic spread of fire, and we added what we think are 
the minimal processes needed for more realism: seasonality 

and forest dispersal distance. We agree with Zinck  et  al. 
(2011) that an extension of the original DSM was needed 
to represent fire processes observed in ecosystems, but we 
also argue that not all complexity can or should be added. 
In fact, it is necessary to keep the model tractable in order 
to e.g. perform parameter-space explorations. Our model is 
consequently phenomenological, in the sense that it does not 
include all mechanisms present at local scales but still tries to 
predict fire dynamics at broad scales.

One of the advantages of this kind of model is that it can 
be applied to different systems. This is the case for the origi-
nal DSM model which has been applied to brain activity and 
rainfalls (Palmieri and Jensen 2020). In these two systems 
there are cycles of loading and discharge, a broad region where 
the fluctuations peak as the critical behaviour is established, 
and not a critical point with a very sharp transition as the 
theory of second-order phase transitions suggests (Stauffer 
and Aharony 1994). A similar behaviour occurs in our model 
version, but not in the original DSM, due to the temporal 
dependence of the parameters imposed by the fire seasons, 
where during some months there is a higher ignition prob-
ability f. This changes the control parameters with respect to 
the DMS model since, in fact, we do not observe a transition 
for a specific value of the θ parameter. Our results suggest 
that instead of having a specific fine-tuning to observe criti-
cal fire spread, a critical region similar to a ‘Griffiths phase’ 
may be present in our model. Originally defined in statistical 
physics (Moretti and Muñoz 2013), a Griffiths phase repre-
sents an extended region in the parameter space characterized 
with power-laws scaling behaviour that arises from heteroge-
neity at local burning patterns. In our model, some areas may 
experience infrequent small fires as in the historical Amazon, 
while others see more active, irregular burning influenced by 
localized factors. However, we lack a rigorous result in this 
regard.

We observed the anticipated impact of the 2010 drought 
on fires in the Amazon biome, resulting in the most exten-
sive fire occurrences on record, even though deforestation 
rates were significantly lower than in the previous decade 
(Aragão et al. 2018). In contrast, other drought years, such as 
the one associated with the El Niño event in 2015–2016, led 
to a considerably lower number of fires compared to the 2010 
drought. This discrepancy may be attributed to the nonlinear 
loading and discharge cycles inherent in the dynamics of fire–
forest systems. Following fires and droughts, fuel accumu-
lates during wetter years, potentially yielding different effects 
during extreme events. Our model, which incorporates the 
influence of drought using actual and predicted tempera-
tures to estimate the probability of ignition (f), supports the 
hypothesis that nonlinear effects play a substantial role in fire 
dynamics. Using the inverse of the p parameter the model also 
predicts that the forest will be recovered between 13 and 19 
years, close to the 23 years suggested by Alencar et al. (2011).

While droughts are considered the primary cause of 
fires in the Amazon, deforestation is becoming the second 
(Aragão et al. 2018). In addition, Cardil (2020) found that in 
2018 most of the fires (85%) were produced in areas deforested 
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in 2018. The fitted parameters, forced with the ignition prob-
ability estimated from actual data are incompatible with such 
a high proportion, but are close to the proportion observed in 
previous years. A model incorporating explicit parameters for 
deforested areas would be needed to resolve this.

The forest state in our model symbolizes flammable for-
est, given that undisturbed tropical forest in the Amazon is 
generally considered non-flammable with a very low prob-
ability of natural fires (Fonseca  et  al. 2019). In contrast, 
deforested areas are flammable, and our fitted parameters 
encapsulate an average of these scenarios. The proportion of 
these types is changing due to increased interfaces between 
undisturbed forest, human-degraded forest, and other land 
uses (Aragão et al. 2018). Human-induced fires persist, origi-
nating from the transportation network and external regions 
(Barlow et al. 2020). These fires can invade standing forest, 
and if climate change makes forests hotter and drier, they 
may sustain more extensive fires (Brando et al. 2019). Our 
model incorporates these changes by varying the proportion 
of forest that burns and is deforested. Thus, besides the range 
of variation in θ is higher for the scenarios with deforestation, 
but as we maintain the average θ constant at the fitted values, 
it is also expected that the deforestation scenarios are far from 
a critical regime as without deforestation. Additionally, as the 
magnitude of fires increases, the probability of forests losing 
their capacity to recover from frequent fires and droughts 
increases (Brando et al. 2019).

It is important to note several caveats about our meth-
odology and approach. The model assumes that after a fire, 
the site cannot burn again until there is vegetation regrowth 
and fuel buildup, representing a negative feedback. It was 
hypothesized that understory wildfires increase the flam-
mability of seasonally dry Amazon forests (Nepstad  et  al. 
1999), representing a positive feedback. Additionally, prior 
disturbances from logging and fire were found to be the best 
predictors of fire occurrence in another eastern Amazon land-
scape (Alencar et al. 2004). In an experimental study, no evi-
dence of the positive feedback was found (Balch et al. 2008). 
However, the negative feedback was not as drastic as repre-
sented in the model because, after one fire – depending on 
the intensity – the fuel may be not completely consumed, 
allowing the site to burn again in the next fire season. Because 
our model is probabilistic, even if the probability of regrowth 
p is low, a small proportion of sites could recover by the next 
burning season, depending on the density of the surrounding 
forest. This proportion increases when p is higher, as assumed 
in our deforestation scenarios.

A more accurate version of the model could incorporate 
a local parameter for the ignition probability f instead of 
the current global f, allowing each site to have a different f 
based on its local fire history. Additional improvements could 
include explicitly modeling two vegetation types, which 
would better capture post-fire changes in the Amazon forest, 
such as the increased f in subsequent fire seasons due to grass 
invasion (Brando et al. 2014), reflecting a positive feedback 
mechanism. While these changes would add more realism to 
the mechanisms represented in the model, they would also 

imply more parameters, increased data requirements, and a 
more complex procedure for fitting the model. The model 
presented in this paper, despite its improvements over the 
original DSM model, is a first step towards a more accurate 
and complex model. However, increasing model complex-
ity should be approached with caution, as it does not always 
result in better predictive capabilities.

Our primary conclusion is that if deforestation and deg-
radation in the Amazon decrease, the region could exhibit 
improved resilience against predicted climate change, miti-
gating the risk of the Amazonian tropical forest collaps-
ing into a savanna. Several studies have proposed that an 
accumulated net deforestation ranging from 20 to 40% in 
the Amazon could trigger a swift transition to non-forest 
ecosystems (Nobre  et  al. 2016, Lovejoy and Nobre 2018). 
Currently, around 20% of the Amazon’s forest has been lost 
since the 1960s, and environmental signals suggest ongo-
ing fluctuations in the system (Lovejoy and Nobre 2018). 
Analysis of early warning transition signals indicates proxim-
ity to a transition point (Saravia et al. 2018). However, our 
model suggests that the fire regime will not undergo a sig-
nificant change solely due to climate change; instead, defor-
estation emerges as the more influential driver. Moreover, 
asserting the safety of the Amazon solely by halting deforesta-
tion is not warranted. Synergies between climate and land use 
disturbances, as indicated in a recent study by Flores  et  al. 
(2024), propose a safe boundary with a cap of 10% accu-
mulated deforestation. Achieving this threshold necessitates 
extensive restoration efforts to rehabilitate a significant por-
tion of degraded forest.
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