Percolation in R - Day 4
Percolation
-
First we will generate a random forest: set each position of a matrix to 1 or 0 with some probability $p$
-
First we need to fill a matrix with numbers
rm(list=ls())
dim_rf <- 10
matrix(0,dim_rf,dim_rf)
matrix(1:dim_rf,dim_rf)
matrix(1:(dim_rf*dim_rf),dim_rf)
- what we really need are random numbers
runif(10)
rf <- matrix(runif(dim_rf*dim_rf),ncol=dim_rf)
- now we need to decide which will become 0 or 1 with some probability, the best way to do that is using a function
set_tree <- function(elem,prob) {
if(elem>prob)
elem <- 0
else
elem <- 1
}
set_tree(rf,0.5)
- the last line don’t works because we need to apply the condition to each site individually
rf <-apply(rf,1:2,set_tree,0.5)
- So we set a matrix of 1’s and 0’s with probability 0.5, we can plot it
image(rf,asp=1,axes=F,col=c("white","black"))
- Now we can put all together and make a function that does all things
generate_rf <- function(sideDim,p)
{
rf <- matrix(runif(sideDim*sideDim),ncol=sideDim)
rf <-apply(rf,1:2,set_tree,p)
image(rf,asp=1,axes=F,col=c("white","black"))
}
- We can see how the matrix is filled when we change $p$
generate_rf(100,0.1)
generate_rf(100,0.5)
generate_rf(100,0.59)
- The next thing is to burn the trees, we forget to return the matrix with the random forest
generate_rf <- function(sideDim,p)
{
rf <- matrix(runif(sideDim*sideDim),ncol=sideDim)
rf <-apply(rf,1:2,set_tree,p)
image(rf,asp=1,axes=F,col=c("white","black"))
return(rf)
}
rf <- generate_rf(10,0.51)
- Now we need a function to explore the neighborhood and fire the actual site if one on the adjacent sites is fired. We can try to use a loop.
rf[1,] <- 2
for(j in 1:ncol(rf))
{
if( rf[1,j]==2 & rf[2,j]==1)
rf[2,j] <- 2
}
- But we have to do that for all the rows of the matrix
for(i in 2:nrow(rf))
for(j in 1:ncol(rf))
{
if( rf[i-1,j]==2 & rf[i,j]==1)
rf[i,j] <- 2
}
image(rf,asp=1,axes=F,col=c("white","black","red"))
- something is wrong, we need to test all the neighborhood
for(i in 2:nrow(rf))
for(j in 2:(ncol(rf)-1))
{
if( (rf[i-1,j]==2 || rf[i-1,j-1]==2 || rf[i-1,j+1]==2) && rf[i,j]==1)
rf[i,j] <- 2
}
- So now we are ready to build the function
fire_rf <- function(rf) {
dimi=nrow(rf)
dimj=ncol(rf)-1
rf[1,] <- 2
for(i in 2:dimi)
for(j in 2:dimj)
{
if((rf[i-1,j]==2 || rf[i-1,j-1]==2 || rf[i-1,j+1]==2) && (rf[i,j]==1))
rf[i,j] <- 2
}
return(rf)
}
rf <- generate_rf(100,0.1)
rf1 <- fire_rf(rf)
image(rf1,asp=1,axes=F,col=c("white","black","red"))
- Now to finish we have to count the number of burned sites, a simple function will do, but first we test the commands
bur <-0
for(i in 2:nrow(rf1))
for(j in 1:ncol(rf1))
{
if(rf1[i,j]==2 )
bur <- bur + 1
}
bur
- next we create the function
countBurned <- function(rf)
{
bur <-0
dimi=nrow(rf)
dimj=ncol(rf)
for(i in 2:dimi)
for(j in 1:dimj)
{
if(rf1[i,j]==2 )
bur <- bur + 1
}
return(bur/((dimi-1)*dimj))
}
Exercise 1
- Make a plot of the proportion of burned sites versus the probability $p$ of the trees
Infection
- We can do this in a similar way, first we need a matrix but now one dimension will be the time
dim_in <- 10
time_in <- 20
inf<-matrix(0,time_in,dim_in)
- At time 1 we need to infect some sites to have a start
inf[1,] <- ifelse(runif(dim_in)>0.5,1,0)
- Now we have to propagate the infection, there are two possibilities: contagion with probability $\lambda$ or recuperation with probability $\mu$
lambda = 0.5
mu= 0.5
for(i in 1:(time_in-1))
for(j in 2:(dim_in-1))
{
if(inf[i,j]==0){
if(inf[i,j-1]==1){
inf[i+1,j] <- ifelse(runif(1)<=lambda,1,0)
}
else if(inf[i,j+1]==1 ){
inf[i+1,j] <- ifelse(runif(1)<=lambda,1,0)
}
}
else
{
inf[i+1,j] <- ifelse(runif(1)<=mu,0,1)
}
}
image(inf,asp=1,axes=F,col=c("grey","brown"))
- Then we put all in a function
simulate_inf <- function(lambda,mu,dim_in,time_in){
inf<-matrix(0,time_in,dim_in)
inf[1,] <- ifelse(runif(dim_in)>0.5,1,0)
for(i in 1:(time_in-1))
for(j in 2:(dim_in-1))
{
if(inf[i,j]==0){
if(inf[i,j-1]==1){
inf[i+1,j] <- ifelse(runif(1)<=lambda,1,0)
}
else if(inf[i,j+1]==1 ){
inf[i+1,j] <- ifelse(runif(1)<=lambda,1,0)
}
}
else
{
inf[i+1,j] <- ifelse(runif(1)<=mu,0,1)
}
}
image(inf,asp=1,axes=F,col=c("grey","brown"))
}
simulate_inf(.4,.4,50,100)
- We can try with different parameters and see what happens at $\lambda > \mu$ or $\lambda < \mu$
Exercise 2
-
Build the plot with a fixed $\mu$ of the probability of propagation versus $\lambda$
-
Estimate the fractal dimension and the multifractal spectrum of the infection