Multifractals in ecology using R - Day 4
Posgraduate course, University of Maringá, 2013
Percolation
First we will generate a random forest: set each position of a matrix to 1 or 0 with some probability $p$
- First we need to fill a matrix with numbers
rm(list=ls()) dim_rf <- 10 matrix(0,dim_rf,dim_rf) matrix(1:dim_rf,dim_rf) matrix(1:(dim_rf*dim_rf),dim_rf)
- what we really need are random numbers
runif(10) rf <- matrix(runif(dim_rf*dim_rf),ncol=dim_rf)
- now we need to decide which will become 0 or 1 with some probability, the best way to do that is using a function
set_tree <- function(elem,prob) { if(elem>prob) elem <- 0 else elem <- 1 } set_tree(rf,0.5)
- the last line don’t works because we need to apply the condition to each site individually
rf <-apply(rf,1:2,set_tree,0.5)
- So we set a matrix of 1’s and 0’s with probability 0.5, we can plot it
image(rf,asp=1,axes=F,col=c("white","black"))
- Now we can put all together and make a function that does all things
generate_rf <- function(sideDim,p) { rf <- matrix(runif(sideDim*sideDim),ncol=sideDim) rf <-apply(rf,1:2,set_tree,p) image(rf,asp=1,axes=F,col=c("white","black")) }
We can see how the matrix is filled when we change $p$ ``` generate_rf(100,0.1)
generate_rf(100,0.5) generate_rf(100,0.59)
+ The next thing is to burn the trees, we forget to return the matrix with the random forest
generate_rf <- function(sideDim,p)
{
rf <- matrix(runif(sideDim*sideDim),ncol=sideDim)
rf <-apply(rf,1:2,set_tree,p)
image(rf,asp=1,axes=F,col=c("white","black"))
return(rf)
}
rf <- generate_rf(10,0.51) ```
- Now we need a function to explore the neighborhood and fire the actual site if one on the adjacent sites is fired. We can try to use a loop.
rf[1,] <- 2 for(j in 1:ncol(rf)) { if( rf[1,j]==2 & rf[2,j]==1) rf[2,j] <- 2 }
- But we have to do that for all the rows of the matrix
for(i in 2:nrow(rf)) for(j in 1:ncol(rf)) { if( rf[i-1,j]==2 & rf[i,j]==1) rf[i,j] <- 2 } image(rf,asp=1,axes=F,col=c("white","black","red"))
- something is wrong, we need to test all the neighborhood
for(i in 2:nrow(rf)) for(j in 2:(ncol(rf)-1)) { if( (rf[i-1,j]==2 || rf[i-1,j-1]==2 || rf[i-1,j+1]==2) && rf[i,j]==1) rf[i,j] <- 2 }
- So now we are ready to build the function
fire_rf <- function(rf) { dimi=nrow(rf) dimj=ncol(rf)-1 rf[1,] <- 2 for(i in 2:dimi) for(j in 2:dimj) { if((rf[i-1,j]==2 || rf[i-1,j-1]==2 || rf[i-1,j+1]==2) && (rf[i,j]==1)) rf[i,j] <- 2 } return(rf) } rf <- generate_rf(100,0.1) rf1 <- fire_rf(rf) image(rf1,asp=1,axes=F,col=c("white","black","red"))
- Now to finish we have to count the number of burned sites, a simple function will do, but first we test the commands
bur <-0 for(i in 2:nrow(rf1)) for(j in 1:ncol(rf1)) { if(rf1[i,j]==2 ) bur <- bur + 1 } bur
- next we create the function
countBurned <- function(rf) { bur <-0 dimi=nrow(rf) dimj=ncol(rf) for(i in 2:dimi) for(j in 1:dimj) { if(rf1[i,j]==2 ) bur <- bur + 1 } return(bur/((dimi-1)*dimj)) }
Exercise 1
- Make a plot of the proportion of burned sites versus the probability $p$ of the trees
Infection
- We can do this in a similar way, first we need a matrix but now one dimension will be the time
dim_in <- 10 time_in <- 20 inf<-matrix(0,time_in,dim_in)
- At time 1 we need to infect some sites to have a start
inf[1,] <- ifelse(runif(dim_in)>0.5,1,0)
- Now we have to propagate the infection, there are two possibilities: contagion with probability $\lambda$ or recuperation with probability $\mu$
lambda = 0.5 mu= 0.5 for(i in 1:(time_in-1)) for(j in 2:(dim_in-1)) { if(inf[i,j]==0){ if(inf[i,j-1]==1){ inf[i+1,j] <- ifelse(runif(1)<=lambda,1,0) } else if(inf[i,j+1]==1 ){ inf[i+1,j] <- ifelse(runif(1)<=lambda,1,0) } } else { inf[i+1,j] <- ifelse(runif(1)<=mu,0,1) } } image(inf,asp=1,axes=F,col=c("grey","brown"))
- Then we put all in a function
simulate_inf <- function(lambda,mu,dim_in,time_in){ inf<-matrix(0,time_in,dim_in) inf[1,] <- ifelse(runif(dim_in)>0.5,1,0) for(i in 1:(time_in-1)) for(j in 2:(dim_in-1)) { if(inf[i,j]==0){ if(inf[i,j-1]==1){ inf[i+1,j] <- ifelse(runif(1)<=lambda,1,0) } else if(inf[i,j+1]==1 ){ inf[i+1,j] <- ifelse(runif(1)<=lambda,1,0) } } else { inf[i+1,j] <- ifelse(runif(1)<=mu,0,1) } } image(inf,asp=1,axes=F,col=c("grey","brown")) } simulate_inf(.4,.4,50,100)
- We can try with different parameters and see what happens at $\lambda > \mu$ or $\lambda < \mu$
Exercise 2
Build the plot with a fixed $\mu$ of the probability of propagation versus $\lambda$
Estimate the fractal dimension and the multifractal spectrum of the infection