Multifractals in ecology using R - Day 4

Posgraduate course, University of Maringá, 2013

Percolation

  • First we will generate a random forest: set each position of a matrix to 1 or 0 with some probability $p$

  • First we need to fill a matrix with numbers
          rm(list=ls())
    
          dim_rf <- 10
    
          matrix(0,dim_rf,dim_rf)
    
          matrix(1:dim_rf,dim_rf)
    
          matrix(1:(dim_rf*dim_rf),dim_rf)
    
  • what we really need are random numbers
          runif(10)
    
          rf <- matrix(runif(dim_rf*dim_rf),ncol=dim_rf)
    
  • now we need to decide which will become 0 or 1 with some probability, the best way to do that is using a function
          set_tree <- function(elem,prob) {
            if(elem>prob) 
                elem <- 0
            else
                elem <- 1
          } 
    
          set_tree(rf,0.5)
    
  • the last line don’t works because we need to apply the condition to each site individually
          rf <-apply(rf,1:2,set_tree,0.5)
    
  • So we set a matrix of 1’s and 0’s with probability 0.5, we can plot it
          image(rf,asp=1,axes=F,col=c("white","black"))
    
  • Now we can put all together and make a function that does all things
          generate_rf <- function(sideDim,p)
          {
            rf <- matrix(runif(sideDim*sideDim),ncol=sideDim)
            rf <-apply(rf,1:2,set_tree,p)
            image(rf,asp=1,axes=F,col=c("white","black"))
          }
    
  • We can see how the matrix is filled when we change $p$ ``` generate_rf(100,0.1)

      generate_rf(100,0.5)
    
      generate_rf(100,0.59)
    

+ The next thing is to burn the trees, we forget to return the matrix with the random forest
	generate_rf <- function(sideDim,p)
	{
	  rf <- matrix(runif(sideDim*sideDim),ncol=sideDim)
	  rf <-apply(rf,1:2,set_tree,p)
	  image(rf,asp=1,axes=F,col=c("white","black"))
	  return(rf)
	}

	rf <- generate_rf(10,0.51) ```
  • Now we need a function to explore the neighborhood and fire the actual site if one on the adjacent sites is fired. We can try to use a loop.
          rf[1,] <- 2
    
          for(j in 1:ncol(rf))
          {
    
              if( rf[1,j]==2 & rf[2,j]==1)
                  rf[2,j] <- 2
          }
    
  • But we have to do that for all the rows of the matrix
          for(i in 2:nrow(rf))
              for(j in 1:ncol(rf))
              {
                  if( rf[i-1,j]==2 & rf[i,j]==1)
                      rf[i,j] <- 2
              }
    
    
          image(rf,asp=1,axes=F,col=c("white","black","red"))
    
  • something is wrong, we need to test all the neighborhood
          for(i in 2:nrow(rf))
              for(j in 2:(ncol(rf)-1))
              {
                  if( (rf[i-1,j]==2 || rf[i-1,j-1]==2 || rf[i-1,j+1]==2) && rf[i,j]==1)
                      rf[i,j] <- 2
              }
    
  • So now we are ready to build the function
          fire_rf <- function(rf) {
            dimi=nrow(rf)
            dimj=ncol(rf)-1
            rf[1,] <- 2
            for(i in 2:dimi)
              for(j in 2:dimj)
              {
                if((rf[i-1,j]==2 || rf[i-1,j-1]==2 || rf[i-1,j+1]==2) && (rf[i,j]==1))
                    rf[i,j] <- 2
              }
            return(rf)
          }
    
          rf <- generate_rf(100,0.1)
    
          rf1 <- fire_rf(rf)
    
          image(rf1,asp=1,axes=F,col=c("white","black","red"))
    
  • Now to finish we have to count the number of burned sites, a simple function will do, but first we test the commands
     		bur <-0
    
          for(i in 2:nrow(rf1))
            for(j in 1:ncol(rf1))
            {
              if(rf1[i,j]==2 )
                  bur <- bur + 1
            }
    
          bur
    
  • next we create the function
          countBurned <- function(rf)
          {
            bur <-0
            dimi=nrow(rf)
            dimj=ncol(rf)
    		  
            for(i in 2:dimi)
              for(j in 1:dimj)
              {
                if(rf1[i,j]==2 )
                  bur <- bur + 1
              }
            return(bur/((dimi-1)*dimj))
          }
    

Exercise 1

  • Make a plot of the proportion of burned sites versus the probability $p$ of the trees

Infection

  • We can do this in a similar way, first we need a matrix but now one dimension will be the time
          dim_in <- 10
          time_in <- 20
    
          inf<-matrix(0,time_in,dim_in)
    
  • At time 1 we need to infect some sites to have a start
          inf[1,] <- ifelse(runif(dim_in)>0.5,1,0)
    
  • Now we have to propagate the infection, there are two possibilities: contagion with probability $\lambda$ or recuperation with probability $\mu$
          lambda = 0.5
    
          mu= 0.5
    
          for(i in 1:(time_in-1))
            for(j in 2:(dim_in-1))
            {
              if(inf[i,j]==0){
    		      
                if(inf[i,j-1]==1){
                  inf[i+1,j] <- ifelse(runif(1)<=lambda,1,0)
                }
                else if(inf[i,j+1]==1 ){
                  inf[i+1,j] <- ifelse(runif(1)<=lambda,1,0)
                }
              }
              else
              {
    
                inf[i+1,j] <- ifelse(runif(1)<=mu,0,1)
              }
            }
    
          image(inf,asp=1,axes=F,col=c("grey","brown"))
    
  • Then we put all in a function
          simulate_inf <- function(lambda,mu,dim_in,time_in){
    		  
            inf<-matrix(0,time_in,dim_in)
            inf[1,] <- ifelse(runif(dim_in)>0.5,1,0)
            for(i in 1:(time_in-1))
              for(j in 2:(dim_in-1))
              {
                if(inf[i,j]==0){
    		        
                  if(inf[i,j-1]==1){
                    inf[i+1,j] <- ifelse(runif(1)<=lambda,1,0)
                  }
                  else if(inf[i,j+1]==1 ){
                    inf[i+1,j] <- ifelse(runif(1)<=lambda,1,0)
                  }
                }
                else
                {
                  inf[i+1,j] <- ifelse(runif(1)<=mu,0,1)
                }
              }
              image(inf,asp=1,axes=F,col=c("grey","brown")) 
          }
    
          simulate_inf(.4,.4,50,100)
    
  • We can try with different parameters and see what happens at $\lambda > \mu$ or $\lambda < \mu$

Exercise 2

  • Build the plot with a fixed $\mu$ of the probability of propagation versus $\lambda$

  • Estimate the fractal dimension and the multifractal spectrum of the infection